【題目】在一次男子馬拉松長跑比賽中,隨機抽得12名選手所用的時間(單位:分鐘)得到如下樣本數(shù)據(jù):140 146 143 175 125 164 134 155 152 168 162 148
(1)計算該樣本數(shù)據(jù)的中位數(shù)和平均數(shù);
(2)如果一名選手的成績是147分鐘,請你依據(jù)樣本數(shù)據(jù)中位數(shù),推斷他的成績?nèi)绾危?/span>
【答案】
(1)
解:將這組數(shù)據(jù)按照從小到大的順序排列為:125,134,140,143,146,148,152,155,162,164,168,175,
則中位數(shù)為: =150,
平均數(shù)為: =151;
(2)
解:由(1)可得,中位數(shù)為150,可以估計在這次馬拉松比賽中,大約有一半選手的成績快于150分鐘,有一半選手的成績慢于150分鐘,這名選手的成績?yōu)?47分鐘,快于中位數(shù)150分鐘,可以推斷他的成績估計比一半以上選手的成績好.
【解析】(1)根據(jù)中位數(shù)和平均數(shù)的概念求解;
(2)根據(jù)(1)求得的中位數(shù),與147進行比較,然后推斷該選手的成績.本題考查了中位數(shù)和平均數(shù)的概念:將一組數(shù)據(jù)按照從小到大(或從大到。┑捻樞蚺帕,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù);平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).
【考點精析】關(guān)于本題考查的算術(shù)平均數(shù),需要了解總數(shù)量÷總份數(shù)=平均數(shù).解題關(guān)鍵是根據(jù)已知條件確定總數(shù)量以及與它相對應(yīng)的總份數(shù)才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動圓圓心Q從點O出發(fā),沿著OA方向以1個單位長度/秒的速度勻速運動,同時動點P從點A出發(fā),沿著AB方向也以1個單位長度/秒的速度勻速運動,設(shè)運動時間為t秒(0<t≤5)以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連結(jié)CD、QC.
(1)當(dāng)t為何值時,點Q與點D重合?
(2)當(dāng)⊙Q經(jīng)過點A時,求⊙P被OB截得的弦長.
(3)若⊙P與線段QC只有一個公共點,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E為對角線BD上一動點.若AB=,當(dāng)∠EAC=15°時,線段BE的長度為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負(fù).如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
(1)圖中A→C( , ),B→C( , ),C→ (+1, );
(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請在圖中標(biāo)出P的位置;
(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;
(4)若圖中另有兩個格點M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應(yīng)記為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= 的圖象在二四象限,一次函數(shù)為y=kx+b(b>0),直線x=1與x軸交于點B,與直線y=kx+b交于點A,直線x=3與x軸交于點C,與直線y=kx+b交于點D.
(1)若點A,D都在第一象限,求證:b>﹣3k;
(2)在(1)的條件下,設(shè)直線y=kx+b與x軸交于點E與y軸交于點F,當(dāng) = 且△OFE的面積等于 時,求這個一次函數(shù)的解析式,并直接寫出不等式 >kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多邊形的內(nèi)角和隨著邊數(shù)的變化而變化.設(shè)多邊形的邊數(shù)為n,內(nèi)角和為N,則變量N與n之間的關(guān)系可以表示為N=(n-2)180°.例如:如圖四邊形ABCD的內(nèi)角和:N=∠A+∠B+∠C+∠D=(4-2)×180°=360°問:(1)利用這個關(guān)系式計算五邊形的內(nèi)角和;(2)當(dāng)一個多邊形的內(nèi)角和N=720°時,求其邊數(shù)n.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小芳在本學(xué)期的體育測試中,1分鐘跳繩獲得了滿分,她的“滿分秘籍”如下:前20秒由于體力好,小芳速度均勻增加,20秒至50秒保持跳繩速度不變,后10秒進行沖刺,速度再次均勻增加,最終獲得滿分,反映小芳1分鐘內(nèi)跳繩速度y(個/秒)與時間t(秒)關(guān)系的函數(shù)圖象大致為( 。
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道,|2-(-1)|表示2與-1的差的絕對值,實際上位可理解為在數(shù)軸上正數(shù)2對應(yīng)的點與負(fù)數(shù)一1對應(yīng)的點之間的距離,試探索:
(1)|2-(-1)|=______;如果|x-1|=2,則x=______.
(2)求|x-2|+|x-4|的最小值,并求此時x的取值范圍;
(3)由以上探素已知(|x-2|+|x+4|)(|y-1|+|y-6|)=10,求x+y的最大值與最小值;
(4)由以上探索及猜想,計算|x-1|+|x-2|+|x-3|+…+|x-2017|+|x-2018|的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com