【題目】下列結(jié)論:w
①若a+b+c=0,且abc≠0,則方程a+bx+c=0的解是x=1;
②若a(x﹣1)=b(x﹣1)有唯一的解,則a≠b;
③若b=2a,則關(guān)于x的方程ax+b=0(a≠0)的解為x=﹣;
④若a+b+c=1,且a≠0,則x=1一定是方程ax+b+c=1的解;
其中結(jié)論正確個(gè)數(shù)有( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】、兩地相距千米,一列慢車(chē)從地開(kāi)出,每小時(shí)行駛千米,一列快車(chē)從地開(kāi)出,每小時(shí)行駛千米,兩車(chē)同時(shí)開(kāi)出.
若相向而行,出發(fā)后多少小時(shí)相遇?
若相背而行,多少小時(shí)后,兩車(chē)相距千米
若兩車(chē)同向而行,快車(chē)在慢車(chē)后面,多少小時(shí)后,快車(chē)追上慢車(chē)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家體育用品商店出售同樣的乒乓球拍和乒乓球,乒乓球拍每副定價(jià)20元,乒乓球每盒定價(jià)5元。現(xiàn)兩家商店搞促銷(xiāo)活動(dòng),甲店的優(yōu)惠辦法是:每買(mǎi)一副乒乓球拍贈(zèng)一盒乒乓球;乙店的優(yōu)惠辦法是:按定價(jià)的9折出售。某班需購(gòu)買(mǎi)乒乓球拍4副,乒乓球若干盒(不少于4盒).
(1)用代數(shù)式表示(所填式子需化簡(jiǎn)):
當(dāng)購(gòu)買(mǎi)乒乓球的盒數(shù)為x盒時(shí),在甲店購(gòu)買(mǎi)需付款 元;在乙店購(gòu)買(mǎi)需付款 元。
(2)當(dāng)購(gòu)買(mǎi)乒乓球盒數(shù)為10盒時(shí),若只能選擇一家商店去購(gòu)買(mǎi),到哪家商店購(gòu)買(mǎi)比較合算?并說(shuō)明理由。
(3)當(dāng)購(gòu)買(mǎi)乒乓球盒數(shù)為10盒時(shí),若不限制購(gòu)買(mǎi)的商店,請(qǐng)你給出一種更為省錢(qián)的購(gòu)買(mǎi)方案,并求出此時(shí)需付款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用四個(gè)長(zhǎng)為m,寬為n的相同長(zhǎng)方形按如圖方式拼成一個(gè)正方形.
(1).請(qǐng)用兩種不同的方法表示圖中陰影部分的面積.
方法①: ;
方法②: .
(2).由 (1)可得出2, ,4mn這三個(gè)代數(shù)式之間的一個(gè)等量關(guān)系為: .
(3)利用(2)中得到的公式解決問(wèn)題:已知2a+b=6,ab=4,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了鼓勵(lì)居民節(jié)約用水,某市自來(lái)水公司對(duì)每戶(hù)月用水量進(jìn)行計(jì)費(fèi),每戶(hù)每月用水量在規(guī)定噸數(shù)以下的收費(fèi)標(biāo)準(zhǔn)相同;規(guī)定噸數(shù)以上的超過(guò)部分收費(fèi)標(biāo)準(zhǔn)相同,以下是小明家月份用水量和交費(fèi)情況:
月份 | |||||
用水量(噸) | |||||
費(fèi)用(元) |
根據(jù)表格中提供的信息,回答以下問(wèn)題:
求出規(guī)定噸數(shù)和兩種收費(fèi)標(biāo)準(zhǔn);
若小明家月份用水噸,則應(yīng)繳多少元?
若小明家月份繳水費(fèi)元,則月份用水多少?lài)崳?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,分別以AC,BC為邊作等邊△ACD和等邊△BCE.設(shè)△ACD、△BCE、△ABC的面積分別是S1、S2、S3 , 現(xiàn)有如下結(jié)論:
①S1:S2=AC2:BC2;
②連接AE,BD,則△BCD≌△ECA;
③若AC⊥BC,則S1S2= S32 .
其中結(jié)論正確的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC的角平分線AD交BC于E,交△ABC的外接圓⊙O于D.
(1)求證:△ABE∽△ADC;
(2)請(qǐng)連接BD,OB,OC,OD,且OD交BC于點(diǎn)F,若點(diǎn)F恰好是OD的中點(diǎn).求證:四邊形OBDC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個(gè)結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長(zhǎng)是9.其中正確的結(jié)論是(把你認(rèn)為正確結(jié)論的序號(hào)都填上.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com