【題目】在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個(gè)結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長(zhǎng)是9.其中正確的結(jié)論是(把你認(rèn)為正確結(jié)論的序號(hào)都填上.)

【答案】①③④
【解析】解:∵△ABC為等邊三角形,
∴BA=BC,∠ABC=∠C=∠BAC=60°,
∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,
∴∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,
∴∠BAE=∠ABC,
∴AE∥BC,所以①正確;
∵△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,
∴BD=BE,∠DBE=60°,
∴△BDE是等邊三角形,所以③正確;
∴∠BDE=60°,
∵∠BDC=∠BAC+∠ABD>60°,
∴∠ADE≠∠BDC,所以②錯(cuò)誤;
∵△BDE是等邊三角形,
∴DE=BD=4,
而△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,
∴AE=CD,
∴△AED的周長(zhǎng)=AE+AD+DE=CD+AD+DE=AC+4=5+4=9,所以④正確.
故答案為①③④.

先根據(jù)等邊三角形的性質(zhì)得BA=BC,∠ABC=∠C=∠BAC=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,所以∠BAE=∠ABC=60°,則根據(jù)平行線的判定方法即可得到AE∥BC;由△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE得到BD=BE,∠DBE=60°,則可判斷△BDE是等邊三角形;根據(jù)等邊三角形的性質(zhì)得∠BDE=60°,而∠BDC>60°,則可判斷∠ADE≠∠BDC;由△BDE是等邊三角形得到DE=BD=4,再利用△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,則AE=CD,所以△AED的周長(zhǎng)=AE+AD+DE=CD+AD+DE=AC+BD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論:w

①若a+b+c=0,且abc≠0,則方程a+bx+c=0的解是x=1;

②若a(x﹣1)=b(x﹣1)有唯一的解,則a≠b;

③若b=2a,則關(guān)于x的方程ax+b=0(a≠0)的解為x=﹣;

④若a+b+c=1,且a≠0,則x=1一定是方程ax+b+c=1的解;

其中結(jié)論正確個(gè)數(shù)有( )

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4張寫(xiě)著以下數(shù)字的卡片,請(qǐng)按要求抽出卡片,完成下列各題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字之積最大,最大值是________.

(2)從中取出2張卡片,使這2張卡片上數(shù)字之差最小,最小值是________.

(3)從中取出4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除或乘方等混合運(yùn)算,使結(jié)果為24,請(qǐng)寫(xiě)出一種符合要求的運(yùn)算式子________.(注:4個(gè)數(shù)字都必須用到且只能用一次.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且|a+4|+(b﹣1)2=0,A、B之間的距離記作|AB|,定義:|AB|=|a﹣b|.

(1)求線段AB的長(zhǎng)|AB|;

(2)設(shè)點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)為x,當(dāng)|PA|﹣|PB|=2時(shí),求x的值;

(3)若點(diǎn)PA的左側(cè),M、N分別是PA、PB的中點(diǎn),當(dāng)PA的左側(cè)移動(dòng)時(shí),下列兩個(gè)結(jié)論:

①|(zhì)PM|+|PN|的值不變;②|PN|﹣|PM|的值不變,其中只有一個(gè)結(jié)論正確,請(qǐng)判斷出正確結(jié)論,并求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y=-x與函數(shù)y=-的圖象相交于A,B兩點(diǎn),過(guò)A,B兩點(diǎn)分別作y軸的垂線,垂足分別為點(diǎn)C,D,求四邊形ACBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對(duì)角線OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB,

(1)求證:四邊形AEBD是菱形;

(2)如果OA=3,OC=2,求出經(jīng)過(guò)點(diǎn)E的反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.

(1)求拋物線的解析式;
(2)拋物線的對(duì)稱(chēng)軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動(dòng)點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)y=與函數(shù)y=在第一象限內(nèi)的圖象,點(diǎn)P是y=的圖象上一動(dòng)點(diǎn),PAx軸于點(diǎn)A,交y=的圖象于點(diǎn)C,PBy軸于點(diǎn)B,交y=的圖象于點(diǎn)D.

(1)求證:D是BP的中點(diǎn);

(2)求四邊形ODPC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)有理數(shù)運(yùn)算時(shí)發(fā)現(xiàn)以下三個(gè)等式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4

(1)他把a=﹣2,b=3代入到第一個(gè)等式的左右兩邊驗(yàn)證:

因?yàn),?/span>=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.

請(qǐng)你幫他把a=﹣2,b=3代入到后兩個(gè)等式的左右兩邊驗(yàn)證是否成立;

(2)通過(guò)上述驗(yàn)證,請(qǐng)你猜想直接寫(xiě)出結(jié)果:(ab)365等于多少,歸納得出:(ab)n等于多少(n為正整數(shù));

(3)請(qǐng)應(yīng)用(2)中歸出的結(jié)論計(jì)算:(2017×112018

查看答案和解析>>

同步練習(xí)冊(cè)答案