【題目】市政府為改善居民的居住環(huán)境,修建了環(huán)境幽雅的環(huán)城公園,為了給公園內(nèi)的草評定期噴水,安裝了一些自動旋轉(zhuǎn)噴水器,如圖所示,設(shè)噴水管高出地面1.5m,在處有一個自動旋轉(zhuǎn)的噴水頭,一瞬間噴出的水流呈拋物線狀.噴頭與水流最高點的連線與地平面成的角,水流的最高點離地平面距離比噴水頭離地平面距離高出2m,水流的落地點為.在建立如圖所示的直角坐標系中:

1)求拋物線的函數(shù)解析式;

2)求水流的落地點點的距離是多少m

【答案】1;(2m

【解析】

試題(1)把拋物線的問題放到直角坐標系中解決,是探究實際問題常用的方法,本題關(guān)鍵是解等腰直角三角形,求出拋物線頂點C2,3.5)及B0,1.5),設(shè)頂點式求解析式;

2)求AD,實際上是求當y=0時點D橫坐標.

在如圖所建立的直角坐標系中,

由題意知,點的坐標為,

為等腰直角三角形,

,

點坐標為

1)設(shè)拋物線的函數(shù)解析式為,

則拋物線過點頂點為,

時,

,得,

,得

解之,得(舍去),

所以拋物線的解析式為

(2)點為拋物線的圖象與軸的交點,

時,即:,解得不合題意,舍去,取

點坐標為m).

答:水流的落地點點的距離是m

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AGDB交CB的延長線于G.若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O,C是優(yōu)弧ACB的中點,D、E分別是OA、OB上的點,AD=BE,CM、CN分別過點D、E.

(1)求證:CD=CE.

(2)求證:=.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,用籬笆靠墻圍成矩形花圍ABCD,墻可利用的最大長度為15米,一面利用舊墻,其余三面用籬笆圍成,籬笆總長為24米.

(1)若圍成的花圃面積為402時,求BC的長;

(2)如圖2若計劃在花圃中間用一道隔成兩個小矩形,且圍成的花圃面積為502,請你判斷能否成功圍成花圃,如果能,求BC的長?如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB⊙O的直徑,點C、D⊙O上,且BC=6cm,AC=8cm,∠ABD=45°

1)求BD的長;

2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB90°,AC2BC,點D在邊AC上,連接BD,過ABD的垂線交BD的延長線于點E

1)若M,N分別為線段ABEC的中點,如圖1,求證:MNEC;

2)如圖2,過點CCFECBD于點F,求證:AE2BF;

3)如圖3,以AE為一邊作一個角等于∠BAC,這個角的另一邊與BE的延長線交于P點,OBP的中點,連接OC,求證:OCBEPE).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為5的扇形AOB中,AOB=90°,點C是弧AB上的一個動點(不與點A、B重合)ODBC,OEAC,垂足分別為D、E

1)當BC=6時,求線段OD的長;

2)在DOE中是否存在長度保持不變的邊?如果存在,請指出并求其長度;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個求助沒有用(使用求助可以讓主持人去掉其中一題的一個錯誤選項).

(1)如果小明第一題不使用求助,那么小明答對第一道題的概率是  

(2)如果小明將求助留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCDEFAB,CD分別交于點G,H,∠CHG的平分線HMAB于點M,若∠EGB50°,則∠GMH的度數(shù)為( 。

A. 50°B. 55°C. 60°D. 65°

查看答案和解析>>

同步練習冊答案