【題目】如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點M是BC的中點,作正方形MNPQ,使點A、C分別在MQ和MN上,連接AN、BQ.
(1)直接寫出線段AN和BQ的數(shù)量關(guān)系是 .
(2)將正方形MNPQ繞點M逆時針方向旋轉(zhuǎn)θ(0°<θ≤360°)
①判斷(1)的結(jié)論是否成立?請利用圖2證明你的結(jié)論;
②若BC=MN=6,當θ(0°<θ≤360°)為何值時,AN取得最大值,請畫出此時的圖形,并直接寫出AQ的值.
【答案】
(1)BQ=AN
(2)解:①BQ=AN成立.
理由:如圖2,連接AM,
∵在Rt△BAC中,M為斜邊BC中點,
∴AM=BM,AM⊥BC,
∴∠AMQ+∠QMB=90°.
∵四邊形PQMN為正方形,
∴MQ=NM,且∠QMN=90°,
∴∠AMQ+∠NMA=90°,
∴∠BMQ=∠AMN.
在△BMQ和△AMN中,
,
∴△BMQ≌△AMN(SAS),
∴BQ=AN;
②由①得,BQ=AN,
∴當BQ取得最大值時,AN取得最大值.
如圖3,當旋轉(zhuǎn)角θ=270°時,BQ=AN(最大),此時∠AMQ=90°.
∵BC=MN=6,M是BC的中點,
∴MQ=6,AM= BC=3,
∴在Rt△AMQ中,由勾股定理得
AQ= = =3 .
【解析】解:(1)BQ=AN.理由:如圖1,∵△ABC是等腰直角三角形,∠BAC=90°,點M是BC的中點,
∴AM⊥BC,BM=AM,
∴∠AMB=∠AMC=90°.
∵四邊形PQMN是正方形,
∴QM=NM.
在△QMB和△NMA中,
,
∴△QMB≌△NMA(SAS),
∴BQ=AN.
所以答案是:BQ=AN;
【考點精析】關(guān)于本題考查的勾股定理的概念和正方形的性質(zhì),需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù)且a≠0)的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地欲搭建一橋,橋的底部兩端間的距離AB=L,稱跨度,橋面最高點到AB的距離CD=h稱拱高,當L和h確定時,有兩種設計方案可供選擇:①拋物線型,②圓弧型.已知這座橋的跨度L=32米,拱高h=8米.
(1)如果設計成拋物線型,以AB所在直線為x軸,AB的垂直平分線為y軸建立坐標系,求橋拱的函數(shù)解析式;
(2)如果設計成圓弧型,求該圓弧所在圓的半徑;
(3)在距離橋的一端4米處欲立一橋墩EF支撐,在兩種方案中分別求橋墩的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的紙箱里裝有3個標號為1,2,﹣3的小球,它們的材質(zhì)、形狀、大小完全相同,小紅從紙箱里隨機取出一個小球,記下數(shù)字為x,小剛從剩下的2個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點P的坐標(x,y).
(1)請你運用畫樹狀圖或列表的方法,寫出點P所有可能的坐標;
(2)求點(x,y)在函數(shù)y=﹣ 圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知C是線段AB的中點,D是線段BC的中點,E是線段AD的中點,F是線段AE的中點,那么線段AF與線段AC的長度比為( )
A. 1∶8 B. 1∶4 C. 3∶8 D. 3∶16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書超過200元一律打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課本中有一個例題:
有一個窗戶形狀如圖1,上部是一個半圓,下部是一個矩形,如果制作窗框的材料總長為6m,如何設計這個窗戶,使透光面積最大?
這個例題的答案是:當窗戶半圓的半徑約為0.35m時,透光面積最大值約為1.05m2 .
我們?nèi)绻淖冞@個窗戶的形狀,上部改為由兩個正方形組成的矩形,如圖2,材料總長仍為6m,利用圖3,解答下列問題:
(1)若AB為1m,求此時窗戶的透光面積?
(2)與課本中的例題比較,改變窗戶形狀后,窗戶透光面積的最大值有沒有變大?請通過計算說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,底邊BC為2 ,頂角A為120°的等腰△ABC中,DE垂直平分AB于D,則△ACE的周長為( )
A.2+2
B.2+
C.4
D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,點O是AB的中點,且AB= ,將一塊直角三角板的直角頂點放在點O處,始終保持該直角三角板的兩直角邊分別與AC、BC相交,交點分別為D、E,則CD+CE=( )
A.
B.
C.2
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com