【題目】某地欲搭建一橋,橋的底部兩端間的距離AB=L,稱跨度,橋面最高點到AB的距離CD=h稱拱高,當L和h確定時,有兩種設計方案可供選擇:①拋物線型,②圓弧型.已知這座橋的跨度L=32米,拱高h=8米.

(1)如果設計成拋物線型,以AB所在直線為x軸,AB的垂直平分線為y軸建立坐標系,求橋拱的函數(shù)解析式;
(2)如果設計成圓弧型,求該圓弧所在圓的半徑;
(3)在距離橋的一端4米處欲立一橋墩EF支撐,在兩種方案中分別求橋墩的高度.

【答案】
(1)解:拋物線的解析式為y=ax2+c,

又∵拋物線經(jīng)過點C(0,8)和點B(16,0),

∴0=256a+8,a=﹣

∴拋物線的解析式為y=﹣ x2+8(﹣16≤x≤16)


(2)解:設弧AB所在的圓心為O,C為弧AB的中點,CD⊥AB于D,延長CD經(jīng)過O點,設⊙O的半徑為R,

在Rt△OBD中,OB2=OD2+DB2

∴R2=(R﹣8)2+162,解得R=20


(3)解:①在拋物線型中設點F(x,y)在拋物線上,x=OE=16﹣4=12,

EF=y=3.5米;

②在圓弧型中設點F′在弧AB上,作F′E′⊥AB于E′,

OH⊥F′E′于H,則OH=D E′=16﹣4=12,O F′=R=20,

在Rt△OH F′中,H F′= ,

∵HE′=OD=OC﹣CD=20﹣8=12,E′F′=HF′﹣HE′=16﹣12=4(米)

∴在離橋的一端4米處,拋物線型橋墩高3.5米; 圓弧型橋墩高4米.


【解析】(1)拋物線的解析式為y=ax2+c,把點C(0,8)和點B(16,0),代入即可求出拋物線解析式;(2)設弧AB所在的圓心為O,C為弧AB的中點,CD⊥AB于D,延長CD經(jīng)過O點,設⊙O的半徑為R,利用勾股定理求出即可;(3)根據(jù)題意畫出圖形,利用垂徑定理以及勾股定理得出AO的長,再求出EF的長即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.

(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最小?若存在,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了進一步改進本校七年級數(shù)學教學,提高學生學習數(shù)學的興趣,校教務處在七年級所有班級中,每班隨機抽取了6名學生,并對他們的數(shù)學學習情況進行了問卷調(diào)查.我們從所調(diào)查的題目中,特別把學生對數(shù)學學習喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個題目,問卷時要求每位被調(diào)查的學生必須從中選一項且只能選一項)結果進行了統(tǒng)計,現(xiàn)將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)以上提供的信息,解答下列問題:
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是;
(3)若該校七年級共有960名學生,請你估算該年級學生中對數(shù)學學習“不太喜歡”的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標系,拋物線 y=﹣ x2+ x+4經(jīng)過A、B兩點.

(1)求出點A、點B的坐標;
(2)若在線段AB上方的拋物線有一動點P,過點P作直線l⊥x軸交AB于點Q,設點P的橫坐標為t(0<t<8),求△ABP的面積S與t的函數(shù)關系式,并求出△ABP的最大面積;
(3)在(2)的條件下,是否存在一點P,使SAPB= SABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,其外角平分線AD交⊙O于D,DM⊥AC于M,下列結論中正確的是
①DB=DC;
②AC+AB=2CM;
③AC﹣AB=2AM;
④SABD=SABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】依次連接菱形各邊中點所得到的四邊形是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D、E分別是△ABC的邊AB、BC上的點,且DE∥AC,AE、CD相交于點O,若SDOE:SCOA=1:25,則SBDE與SCDE的比是(

A.1:3
B.1:4
C.1:5
D.1:25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點M是BC的中點,作正方形MNPQ,使點A、C分別在MQ和MN上,連接AN、BQ.
(1)直接寫出線段AN和BQ的數(shù)量關系是
(2)將正方形MNPQ繞點M逆時針方向旋轉(zhuǎn)θ(0°<θ≤360°)
①判斷(1)的結論是否成立?請利用圖2證明你的結論;
②若BC=MN=6,當θ(0°<θ≤360°)為何值時,AN取得最大值,請畫出此時的圖形,并直接寫出AQ的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=k(x﹣k)與y=kx2 , y= (k≠0),在同一坐標系上的圖象正確的是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案