【題目】
(1)計算: ;
(2)化簡:(a+3)2+a(4﹣a)

【答案】
(1)解:原式=1+4﹣2 =5﹣2
(2)解:原式=a2+6a+9+4a﹣a2=10a+9
【解析】(1)原式第一項利用零指數(shù)冪法則計算,第二項利用負數(shù)的絕對值等于它的相反數(shù)計算,最后一項化為最簡二次根式,計算即可得到結果;(2)原式第一項利用完全平方公式展開,第二項利用單項式乘多項式法則計算即可得到結果.
【考點精析】根據(jù)題目的已知條件,利用零指數(shù)冪法則和實數(shù)的運算的相關知識可以得到問題的答案,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運算中,要從左到右進行運算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將一張長方形的紙對折一次,然后沿折痕剪開,可以將這張紙分為兩部分:如圖2,如果對折兩次,然后沿最后一次的折痕剪開,可以將這張紙分為三部分;用同樣的操作方法繼續(xù)下去,如果對折4次,然后沿最后一次的折痕剪開,則可以將它剪成_______部分;如果對折次,沿最后一次的折痕剪開,則可以將它剪成_______ 部分.(最后一空用含的式子表示)

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AP垂直∠ABC的平分線BP于點P.ABC的面積為32cm2,BP=6cm,APB的面積是APC的面積的3AP=________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知x-1,求x2+3x-1的值;

(2)若|x-4|++(z+27)2=0,求的值

(3)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,經(jīng)過原點的拋物線的解析式可以是y=ax2+bx(a≠0)
(1)對于這樣的拋物線:
當頂點坐標為(1,1)時,a=
當頂點坐標為(m,m),m≠0時,a與m之間的關系式是
(2)繼續(xù)探究,如果b≠0,且過原點的拋物線頂點在直線y=kx(k≠0)上,請用含k的代數(shù)式表示b;
(3)現(xiàn)有一組過原點的拋物線,頂點A1 , A2 , …,An在直線y=x上,橫坐標依次為1,2,…,n(為正整數(shù),且n≤12),分別過每個頂點作x軸的垂線,垂足記為B1 , B2 , …,Bn , 以線段AnBn為邊向右作正方形AnBnCnDn , 若這組拋物線中有一條經(jīng)過Dn , 求所有滿足條件的正方形邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC,∠ACB=90°,AB=5cm,BC=4cm,若點P從點A出發(fā),以每秒2cm的速度沿折線A﹣B﹣C﹣A運動設運動時間為t秒(t>0).

(1)若點PBC,且滿足PA=PB,求此時t的值;

(2)若點P恰好在∠ABC的角平分線上,求此時t的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】省教育廳決定在全省中小學開展“關注校車、關愛學生”為主題的交通安全教育宣傳周活動,某中學為了了解本校學生的上學方式,在全校范圍內隨機抽查了部分學生,將收集的數(shù)據(jù)繪制成如圖兩幅不完整的統(tǒng)計圖(如圖所示),請根據(jù)圖中提供的信息,解答下列問題.
(1)m=%,這次共抽取名學生進行調查;并補全條形圖
(2)在這次抽樣調查中,采用哪種上學方式的人數(shù)最多?
(3)如果該校共有1500名學生,請你估計該校騎自行車上學的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系xoy中,拋物線y=(m﹣1)x2﹣(3m﹣4)x﹣3與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸是經(jīng)過(1,0)且與y軸平行的直線,點P是拋物線上的一點,點Q是y軸上一點;

(1)求拋物線的函數(shù)關系式;
(2)若以A、B、P、Q為頂點的四邊形是平行四邊形,求點P的坐標;
(3)若tan∠PCB= ,求點P的坐標.

查看答案和解析>>

同步練習冊答案