【題目】如圖,在RtABC 中,ABAC,D、E是斜邊BC上兩點,且∠DAE45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB.設BEa,DCb,那么AB_____.(用含a、b的式子表示AB

【答案】

【解析】

只要證明△FAE≌△DAE,推出EFED,∠ABF=∠C45°,由∠EBF=∠ABF+ABE90°,推出,可得,根據(jù)ABBCcos45°即可解決問題.

證明:如圖,

∵△DAC≌△FAB,

ADAF,∠DAC=∠FAB,

∴∠FAD90°,

∵∠DAE45°,

∴∠DAC+BAE=∠FAB+BAE=∠FAE45°,

在△FAE和△DAE中,

∴△FAE≌△DAE,

EFED,∠ABF=∠C45°,

∵∠EBF=∠ABF+ABE90°,

,

BCa+b+,

故答案為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】婁底市某樓盤準備以每平方米5000元的均價對外銷售,由于國務院有關(guān)房地產(chǎn)的新政策出臺后,購房者持幣觀望.為了加快資金周轉(zhuǎn),房地產(chǎn)開發(fā)商對價格經(jīng)過兩次下調(diào)后,決定以每平方米4050元的均價開盤銷售.

(1)求平均每次下調(diào)的百分率;

(2)某人準備以開盤均價購買一套150平方米的房子.開發(fā)商還給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷售;②不打折,送三年物業(yè)管理費.物業(yè)管理費為每平方米每月1.5元.請問哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,弦,

1)求證:是等邊三角形.

2)若點的中點,連接,過點,垂足為,若,求線段的長;

3)若的半徑為4,點是弦的中點,點是直線上的任意一點,將點繞點逆時針旋轉(zhuǎn)60°得點,求線段的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在梯形ABCD中,,P是線段BC上一點,以P為圓心,PA為半徑的與射線AD的另一個交點為Q,射線PQ與射線CD相交于點E,設.

1)求證:

2)如果點Q在線段AD上(與點A、D不重合),設的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;

3)如果相似,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在海灣森林公園放風箏.如圖所示,小明在A處,風箏飛到C處,此時線長BC40米,若小明雙手牽住繩子的底端B距離地面1.5米,從B處測得C處的仰角為60°,求此時風箏離地面的高度CE.(計算結(jié)果精確到0.1米,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知OAB在直角坐標系中的位置如圖,點A在第一象限,點Bx軸正半軸上,OAOB6,∠AOB30°

1)求點A、B的坐標;

2)開口向上的拋物線經(jīng)過原點O和點B,設其頂點為E,當OBE為等腰直角三角形時,求拋物線的解析式;

3)設半徑為2的⊙P與直線OA交于M、N兩點,已知Pm,2)(m0),求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yax2x+c的對稱軸為直線x1,與x軸的一個交點為A(﹣1,0),頂點為B.點C5m)在拋物線上,直線BCx軸于點E

1)求拋物線的表達式及點E的坐標;

2)聯(lián)結(jié)AB,求∠B的正切值;

3)點G為線段AC上一點,過點GCB的垂線交x軸于點M(位于點E右側(cè)),當CGMABE相似時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Aa,4),B(﹣4,b是一次函數(shù)與反比例函數(shù)圖象的兩個交點.

1)若a1,求反比例函數(shù)的解析式及b的值;

2)在(1)的條件下,根據(jù)圖象直接回答:當x取何值時,反比例函數(shù)大于一次函數(shù)的值?

3)若ab4,求一次函數(shù)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠A = 30°,AB = mCD是邊AB上的中線,將ACD沿CD所在直線翻折,得到ECD,若ECDABC重合部分的面積等于ABC面積的,則ABC的面積為___________(用m的代數(shù)式表示).

查看答案和解析>>

同步練習冊答案