【題目】小蟲(chóng)從點(diǎn)出發(fā)在一條直線上來(lái)回爬行,假定向右爬行的路程記作正數(shù),向左爬行的路程記作負(fù)數(shù),爬行的各段路程(單位:)依次為:.
(1)小蟲(chóng)在爬行過(guò)程中離點(diǎn)最遠(yuǎn)的距離是多少?
(2)小蟲(chóng)爬到最后距點(diǎn)多遠(yuǎn)?
(3)如果小蟲(chóng)爬行就獎(jiǎng)勵(lì)它一粒芝麻,那么小蟲(chóng)一共可得到多少粒芝麻?
【答案】(1);(2);(3)50
【解析】
(1)分別依次進(jìn)行計(jì)算,根據(jù)絕對(duì)值的大小比較即可;(2)把所有的路程相加,然后根據(jù)有理數(shù)的加法運(yùn)算法則進(jìn)行計(jì)算即可;(3)根據(jù)絕對(duì)值的性質(zhì)把所有路程相加;根據(jù)爬行就獎(jiǎng)勵(lì)即可得到答案;
解:
(1)(+5)+(-3)=2,
2+(+9)=11,
11+(-7)=4,
4+(-6)=-2,
-2+(+12)=10,
10+(-8)=2,
∴距離點(diǎn)A最遠(yuǎn)有11cm;
(2)5+(-3)+9+(-7)+(-6)+12+(-8)=2;
∴小蟲(chóng)爬到最后時(shí)離A點(diǎn)2cm;
(3) |+5|+|-3|+|+9|+|-7|+|-6|+|+12|+|-8|,
=5+3+9+7+6+12+8,
=50cm.
50×1=50(粒).
答:小蟲(chóng)共可以得到50粒芝麻.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡(jiǎn)單多面體中項(xiàng)點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個(gè)有趣的關(guān)系式,被稱(chēng)為歐拉公式。請(qǐng)你觀察下列兒種簡(jiǎn)單多面體模型,解答下列問(wèn)題:
(1)根據(jù)上面多面體模型,完成表格中的空格:
多面體 | 項(xiàng)點(diǎn)數(shù)(V) | 面數(shù)(F) | 棱數(shù)(F) |
四面體 | |||
長(zhǎng)方體 | |||
正八面體 | |||
正十二面體 |
你發(fā)現(xiàn)項(xiàng)點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(F)之間存在的關(guān)系式是__________________________.
(2)一個(gè)多面體的面數(shù)比頂點(diǎn)數(shù)小8,且有30條棱,則這多面體的頂點(diǎn)數(shù)是 20;
(3)某個(gè)玻璃飾品的外形是簡(jiǎn)單多面體,它的外表是由三角形和八邊形兩種多邊形拼接而成,且有48個(gè)頂點(diǎn),每個(gè)頂點(diǎn)處都有3條棱,設(shè)該多面體表面三角形的個(gè)數(shù)為x個(gè),八邊形的個(gè)數(shù)為y個(gè),求x+y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩名同學(xué)做摸球游戲,他們把三個(gè)分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個(gè)不透明的口袋中.
(1)求從袋中隨機(jī)摸出一球,標(biāo)號(hào)是1的概率;
(2)從袋中隨機(jī)摸出一球后放回,搖勻后再隨機(jī)摸出一球,若兩次摸出的球的標(biāo)號(hào)之和為偶數(shù)時(shí),則甲勝;若兩次摸出的球的標(biāo)號(hào)之和為奇數(shù)時(shí),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】植樹(shù)節(jié)期間,某單位欲購(gòu)進(jìn)A、B兩種樹(shù)苗,若購(gòu)進(jìn)A種樹(shù)苗3棵,B種樹(shù)苗5棵,需2100元,若購(gòu)進(jìn)A種樹(shù)苗4棵,B種樹(shù)苗10棵,需3800元.
(1)求購(gòu)進(jìn)A、B兩種樹(shù)苗的單價(jià);
(2)若該單位準(zhǔn)備用不多于8000元的錢(qián)購(gòu)進(jìn)這兩種樹(shù)苗共30棵,求A種樹(shù)苗至少需購(gòu)進(jìn)多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為鼓勵(lì)節(jié)約用水,某地推行階梯式水價(jià)計(jì)費(fèi)制,標(biāo)準(zhǔn)如下:每月用水不超過(guò)17立方米的按每立方米元計(jì)費(fèi),超過(guò)17立方米而未超過(guò)30立方米的部分按每立方米元計(jì)費(fèi),超過(guò)30立方米的部分按每立方米元計(jì)費(fèi),某戶(hù)居民上月用水35立方米,應(yīng)繳水費(fèi)_________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索n×n的正方形釘子板上(n是釘子板每邊上的釘子數(shù),每邊上相鄰釘子間的距離為1),連接任意兩個(gè)釘子所得到的不同長(zhǎng)度值的線段種數(shù):
當(dāng)n=2時(shí),釘子板上所連不同線段的長(zhǎng)度值只有1與,所以不同長(zhǎng)度值的線段只有2種,若用S表示不同長(zhǎng)度值的線段種數(shù),則S=2;
當(dāng)n=3時(shí),釘子板上所連不同線段的長(zhǎng)度值只有1, ,2, ,2五種,比n=2時(shí)增加了3種,即S=2+3=5.
(1)觀察圖形,填寫(xiě)下表:
釘子數(shù)(n×n) | S值 |
2×2 | 2 |
3×3 | 2+3 |
4×4 | 2+3+(____) |
5×5 | (________) |
(2)寫(xiě)出(n-1)×(n-1)和n×n的兩個(gè)釘子板上,不同長(zhǎng)度值的線段種數(shù)之間的關(guān)系;(用式子或語(yǔ)言表述均可).
(3)對(duì)n×n的釘子板,寫(xiě)出用n表示S的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】光明中學(xué)組織全校1000名學(xué)生進(jìn)行了校園安全知識(shí)競(jìng)賽.為了解本次知識(shí)競(jìng)賽的成績(jī)分布情況,從中隨機(jī)抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿(mǎn)分為100分),并繪制了如圖的頻數(shù)分布表和頻數(shù)分布直方圖(不完整).
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 10 | a |
60.5~70.5 | b | |
70.5~80.5 | 0.2 | |
80.5~90.5 | 52 | 0.26 |
90.5~100.5 | 0.37 | |
合計(jì) | c | 1 |
請(qǐng)根據(jù)以上提供的信息,解答下列問(wèn)題:
(1)直接寫(xiě)出頻數(shù)分布表中a,b,c的值,補(bǔ)全頻數(shù)分布直方圖.
(2)上述學(xué)生成績(jī)的中位數(shù)落在哪一組范圍內(nèi)?
(3)學(xué)校將對(duì)成績(jī)?cè)?0.5~100.5分之間的學(xué)生進(jìn)行獎(jiǎng)勵(lì),請(qǐng)估計(jì)全校1000名學(xué)生中約有多少名獲獎(jiǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點(diǎn)O,交BC于點(diǎn)E,AD∥BC,連接CD.
(1)求證:AO=EO;
(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=∠DOC=90°,OE平分∠AOD,反向延長(zhǎng)射線OE至F.
(1)∠AOD和∠BOC是否互補(bǔ)?說(shuō)明理由;
(2)射線OF是∠BOC的平分線嗎?說(shuō)明理由;
(3)反向延長(zhǎng)射線OA至點(diǎn)G,射線OG將∠COF分成了4:3的兩個(gè)角,求∠AOD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com