【題目】在蘭州市開展的“體育、藝術(shù)2+1”活動中,某校根據(jù)實際情況,決定主要開設(shè)A:乒
乓球,B:籃球,C:跑步,D:跳繩這四種運動項目.為了解學(xué)生喜歡哪一種項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.請你結(jié)合圖中信息解答下列問題:
(1)樣本中喜歡B項目的人數(shù)百分比是 ,其所在扇形統(tǒng)計圖中的圓心角的度數(shù)是 ;
(2)把條形統(tǒng)計圖補充完整;
(3)已知該校有1000人,根據(jù)樣本估計全校喜歡乒乓球的人數(shù)是多少?
【答案】解:(1)20%,72°.(2)答案見解析:(3)440 人.
【解析】
(1)根據(jù)扇形統(tǒng)計圖知,樣本中喜歡B項目的人數(shù)百分比是:1-44%-28%-8%=20%,其所在扇形統(tǒng)計圖中的圓心角的度數(shù)是3600×20%=700.
(2)由A的數(shù)據(jù)求出樣本人數(shù):44÷44%=100(人),從而得到B的人數(shù):100×20%=20(人),據(jù)此將條形統(tǒng)計圖補充完整.
(3)用樣本的數(shù)據(jù)估計總體.
解:(1)1-44%-8%-28%=20%,所在扇形統(tǒng)計圖中的圓心角的度數(shù)是:360×20%=72°
故答案為:20%,72°.
(2)調(diào)查的總?cè)藬?shù)是:44÷44%=100(人),
則喜歡B的人數(shù)是:100×20%=20(人),
條形統(tǒng)計圖補充完整如圖:
(3)∵1000×44%=440(人),
∴估計全校喜歡乒乓球的人數(shù)是440 人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 中,AB=8,BC=4.點 E 在邊 AB 上,點 F 在邊 CD 上,點 G、H 在對角線 AC 上.若四邊形 EGFH 是菱形,則 AE 的長是( )
A.2B.3C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長均為1的方格紙中有線段AB和CD,點A、B、C、D均在小正方形的頂點上.
(1)畫出一個以AB為一邊的△ABE,點E在小正方形的頂點上,且∠BAE=45°,△ABE的面積為;
(2)畫出以CD為一腰的等腰△CDF,點F在小正方形的頂點上,且△CDF的面積為;
(3)在(1)、(2)的條件下,連接EF,請直接寫出線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點作軸的垂線,交直線于點;點與點關(guān)于直線對稱;過點作軸的垂線,交直線于點;點與點關(guān)于直線對稱;過點作軸的垂線,交直線于點;,按此規(guī)律作下去,則點的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是一張放在平面直角坐標(biāo)系中的紙片,點與原點重合,點在軸的正半軸上,點在軸的正半軸上.已知,.將紙片的直角部分翻折,使點落在邊上,記為點,為折痕,點在軸上.
(1)在如圖所示的直角坐標(biāo)系中,點的坐標(biāo)為,________,________;
(2)線段上有一動點(不與點,重合)自點沿方向以每秒個單位長度向點做勻速運動,設(shè)運動時間為,過點作交于點,過點作交于點,求四邊形的面積與時間之間的函數(shù)表達式.當(dāng)取何值時,有最大值?最大值是多少?
(3)當(dāng)為何值時,,,三點構(gòu)成一個等腰三角形?并求出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買A,B兩種型號的機器人搬運材料.已知A型機器人比B型機器人每小時多搬運30kg材料,且A型機器人搬運1000kg材料所用的時間與B型機器人搬運800kg材料所用的時間相同.
(1)求A,B兩種型號的機器人每小時分別搬運多少材料;
(2)該公司計劃采購A,B兩種型號的機器人共20臺,要求每小時搬運材料不得少于2800kg,則至少購進A型機器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=﹣x+7a+1與直線y=2x﹣2a+4同時經(jīng)過點P,點Q是以M(0,﹣1)為圓心,MO為半徑的圓上的一個動點,則線段PQ的最小值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在高爾夫球訓(xùn)練中,運動員在距球洞處擊球,其飛行路線滿足拋物線,其圖象如圖所示,其中球飛行高度為,球飛行的水平距離為,球落地時距球洞的水平距離為.
(1)求的值;
(2)若運動員再一次從此處擊球,要想讓球飛行的最大高度不變且球剛好進洞,則球的飛行路線應(yīng)滿足怎樣的拋物線,求拋物線的解析式;
(3)若球洞處有一橫放的高的球網(wǎng),球的飛行路線仍滿足拋物線,要使球越過球網(wǎng),又不越過球洞(剛好進洞),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段 AB 經(jīng)過⊙O 的圓心, AC , BD 分別與⊙O 相切于點 C ,D .若 AC =BD = 4 ,∠A=45°,則弧CD的長度為( )
A.πB.2πC.2πD.4π
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com