【題目】如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則cos∠EFG的值為________.
【答案】
【解析】試題分析:作EH⊥AD于H,連接BE、BD,連接AE交FG于O,如圖,
∵四邊形ABCD為菱形,∠A=60°,
∴△BDC為等邊三角形,∠ADC=120°,
∵E點為CD的中點,
∴CE=DE=1,BE⊥CD,
在Rt△BCE中,BE=CE=,
∵AB∥CD,
∴BE⊥AB,
設(shè)AF=x,
∵菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F,G分別在邊AB,AD上,
∴EF=AF,FG垂直平分AE,∠EFG=∠AFG,
在Rt△BEF中,(2-x)2+()2=x2,
解得x=,
在Rt△DEH中,DH=DE=,
HE=DH=,
在Rt△AEH中,AE==,
∴AO=,
在Rt△AOF中,OF==,
∴cos∠AFO==,
∵∠EFG=∠AFO,
∴cos∠EFG=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,BD是中線,P是直線BC上一點.
(1) 若CP=CD,求證:△DBP是等腰三角形;
(2) 在圖①中建立以△ABC的邊BC的中點為原點,BC所在直線為x軸,BC邊上的高所在直線為y軸的平面直角坐標系,如圖②,已知等邊△ABC的邊長為2,AO=,在x軸上是否存在除點P以外的點Q,使△BDQ是等腰三角形?如果存在,請求出Q點的坐標;如果不存在,請說明由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC、△CDE均為等邊三角形,連接BD、AE交于點O,BC與AE交于于點P.
(1)求證:△ACE ≌ △BCD.
(2)求∠AOB的度數(shù).
(3)連接OC,求證:OC平分∠AOD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△OAC是一張放在平面直角坐標系中的直角三角形紙片,點O與原點重合,點A在x軸上,點C在y軸上,OA和OC是方程x(3+)x+3=0的兩根(OA>OC),∠CAO=30°,將Rt△OAC折疊,使OC邊落在AC邊上,點O與點D重合,折痕為CE.
(1)求點D的坐標;
(2)設(shè)點M為直線CE上的一點,過點M作AC的平行線,交y軸于點N,是否存在這樣的點M,使得以M、N、D. C為頂點的四邊形是平行四邊形?若存在,請求出符合條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商城經(jīng)銷一款新產(chǎn)品,該產(chǎn)品的進價6元/件,售價為9元/件.工作人員對30天銷售情況進行跟蹤記錄并繪制成圖象,圖中的折線OAB表示日銷售量(件)與銷售時間(天)之間的函數(shù)關(guān)系.
(1)第18天的日銷售量是 件
(2)求與之間的函數(shù)關(guān)系式,并寫出的取值范圍
(3)日銷售利潤不低于900元的天數(shù)共有多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是甲、乙兩車在某時段速度隨時間變化的圖像;下列說法:
①乙車前 4 秒行駛的路程為 48 米;
②在 0 到 8 秒內(nèi)甲車的速度每秒增加 4 米;
③兩車到第 3 秒時行駛的路程相等;
④在 4 到 8 秒內(nèi)甲車的速度都大于乙車的速度.
其中正確的有( )
A. 1 個B. 2 個C. 3 個D. 4 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩校參加數(shù)學競賽,兩校參加初賽的人數(shù)相等.初賽結(jié)束后,發(fā)現(xiàn)學生成績分別為 70 分、80 分、90 分、100 分.依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖表.
甲校成績統(tǒng)計表:
分數(shù) | 70 分 | 80 分 | 90 分 | 100 分 |
人數(shù) | 11 | 0 | 8 |
(1)在圖 1 中,“80 分”所在的扇形的圓心角等于 度;
(2)請將甲校成績統(tǒng)計表和圖 2 的乙校成績條形統(tǒng)計圖補充完整;
(3)計算乙校的平均分和甲校的中位數(shù);
(4)如果縣教育局要組織 8 人的代表隊參加市級復(fù)賽(團體賽),為了便于管理,決定從這兩所學校中的一所挑選參賽選手,你認為應(yīng)選哪個學校?請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學“我最喜愛的體育項目”進行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:
(1)該班共有_____名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為_____;
(4)學校將舉辦體育節(jié),該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到 △A1BC1.
(1)如圖1,當點C1在線段CA的延長線上時,求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC 繞點 B 按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點是點P1,求線段EP1長度的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com