【題目】如圖,的直徑,,點(diǎn)是弧上的任一點(diǎn),過點(diǎn)的切線交于點(diǎn).連接

1)求證:

2)填空:①當(dāng)_____時(shí),四邊形是正方形;

②當(dāng)_____時(shí),四邊形是菱形.

【答案】1)見解析;(2)①,②

【解析】

1)連接BC,由AB為圓的直徑,可得 ,CE為⊙O的切線,DBAB,可得EC=EB,可得,再利用等角的余角相等得到,因此CE=ED,

2)①利用四邊形OCEB是正方形,得∠CED=90°,結(jié)合CE=ED,利用等腰直角三角形的性質(zhì)可得答案; ②利用四邊形OACF是菱形,得△OAC為等邊三角形,利用DBAB,直角三角形兩銳角互余可得到答案.

1)證明:如圖,連接

,

的直徑,

,

切線,

,

,

2)①如圖,

若四邊形OCEB是正方形, 則∠CEB=90°,

<> ∴∠CED=90°,

CE=ED, ∴∠D=DCE=45°,

故答案為45°;

②若四邊形OACF是菱形,

OA=AC, ∵OA=OC,

OAC為等邊三角形,

∴∠A=60°

DBAB, ∴∠A+D=90°,

∴∠D=90°-60°=30°,

故答案為30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,AB=10,AC=6,連結(jié)OC,弦AD分別交OC,BC于點(diǎn)E,F,其中點(diǎn)EAD的中點(diǎn).

1)求證:∠CAD=CBA

2)求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線,分別交于點(diǎn),和點(diǎn),,且 已知半徑等于5, 的長度為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線經(jīng)過的頂點(diǎn)上的中點(diǎn),軸,點(diǎn)的坐標(biāo)為.則(1)點(diǎn)的坐標(biāo)為______.(2的面積是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著國內(nèi)疫情基本得到控制,旅游業(yè)也慢慢復(fù)蘇,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn)旅游景點(diǎn)未來天內(nèi),旅游人數(shù)與時(shí)間的關(guān)系如下表;每張門票與時(shí)間之間存在如下圖所示的一次函數(shù)關(guān)系.(,且為整數(shù))

時(shí)間(天)

人數(shù)(人)

<>

請(qǐng)結(jié)合上述信息解決下列問題:

1)直接寫出:關(guān)于的函數(shù)關(guān)系式是 與時(shí)間函數(shù)關(guān)系式是

2)請(qǐng)預(yù)測(cè)未來天中哪一天的門票收入最多,最多是多少?

3)為支援武漢抗疫,該旅游景點(diǎn)決定從每天獲得的門票收入中拿出元捐贈(zèng)給武漢紅十字會(huì),求捐款后共有幾天每天剩余門票收入不低于元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yax2x+cx軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線y=﹣x+3經(jīng)過點(diǎn)B,C

1)求拋物線的解析式;

2)若點(diǎn)P為直線BC下方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),則△PBC的面積能夠等于△BOC的面積嗎?若能,求出相應(yīng)的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由;

3)如圖2,現(xiàn)把△BOC平移至如圖所示的位置,此時(shí)三角形水平方向一邊的兩個(gè)端點(diǎn)點(diǎn)O與點(diǎn)B都在拋物線上,稱點(diǎn)O和點(diǎn)B為△BOC在拋物線上的一卡點(diǎn)對(duì);如果把△BOC旋轉(zhuǎn)一定角度,使得其余邊位于水平方向然后平移,能夠得到這個(gè)三角形在拋物線上新的卡點(diǎn)對(duì).請(qǐng)直接寫出△BOC在已知拋物線上所有卡點(diǎn)對(duì)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,點(diǎn)P是平行四邊形ABCD外一點(diǎn),PEABBC于點(diǎn)EPA、PD分別交BC于點(diǎn)M、N,點(diǎn)MBE的中點(diǎn).


1)求證:CN=EN

2)若平行四邊形ABCD的面積為12,求PMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的高速發(fā)展,人們的支付方式發(fā)生了巨大改變,某學(xué)習(xí)小組抽樣調(diào)查了春節(jié)期間某商場(chǎng)顧客的支付方式,主要有現(xiàn)金支付、銀聯(lián)卡支付和手機(jī)支付,調(diào)查得知使用這三種支付的人數(shù)比為,手機(jī)支付已成為市民購物便捷支付方式.手機(jī)支付主要有以下三種方式:~支付寶,~微信,~其他.現(xiàn)將使用手機(jī)支付方式人數(shù)的調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

1)扇形統(tǒng)計(jì)圖中,________;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該商場(chǎng)春節(jié)期間共20000人購物,請(qǐng)估計(jì)用支付寶進(jìn)行支付的人數(shù).

3)經(jīng)調(diào)查某天顧客現(xiàn)金支付、銀聯(lián)卡支付、手機(jī)支付每筆交易發(fā)生的平均金額分別為120元、260元、80元,求這天顧客每筆交易的平均金額.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長線于點(diǎn)E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案