【題目】如圖,在中,點D,E分別在邊AC,AB上,BD與CE交于點O,給出下列三個條件:①∠EBO=∠DCO;②;③.
(1)上述三個條件中,由哪兩個條件可以判定是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,說明你的理由.
【答案】(1)①②或①③;(2)見解析.
【解析】
(1)由①②;①③.兩個條件可以判定△ABC是等腰三角形,
(2)先求出∠ABC=∠ACB,即可證明△ABC是等腰三角形.
解:(1)①②;①③.
(2)選①③證明如下,
∵OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,
∴∠ABC=∠ACB,
∴△ABC是等腰三角形.
選①②證明如下,
在△EBO與△DCO中,
∵,
∴△EBO≌△DCO(AAS),
∴OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動,他從A處出發(fā)去看望B、C、D處的其他甲蟲,規(guī)定:向上向右走均為正,向下向左走均為負,如果從A到B記為A→B{1,4},從B到A記為:B→A{﹣1,﹣4},其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
(1)圖中A→C{ , },C→B{ , }.
(2)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程.
(3)若圖中另有兩個格點M、N,且M→A{2﹣a,b﹣3},M→N{3﹣a,b﹣2},則N→A應記為什么?直接寫出你的答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與函數(shù)y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知射線OA,OB,OC,OD,∠AOD=∠BOC=α.
①若α=38°,∠COD=30°,求∠BOD、∠AOC的度數(shù);
②若∠COD=25°,請找出圖中與∠BOD相等的角,并通過計算說明理由;
(2)如圖2,∠MPN是鈍角,請利用三角尺畫特殊角的功能,在圖2中畫一個與∠MPN相等的角.(標出圖中特殊角的度數(shù),并寫出與∠MPN相等的角)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若有理數(shù)a,b滿足條件:(m是整數(shù)),則稱有理數(shù)a,b為一對“共享數(shù)”,其中整數(shù)m是a,b的“共享因子”.
(1)下列兩對數(shù)中:①3和5,②6和8,是一對“共享數(shù)”的是 ;(填序號)
(2)若7和x是一對“共享數(shù)”,且“共享因子”為2,求x的值;
(3)探究:當有理數(shù)a,b滿足什么條件時,a,b是一對“共享數(shù)”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司在某市五個區(qū)投放共享單車供市民使用,投放量的分布及投放后的使用情況統(tǒng)計如下.
(1)該公司在全市一共投放了 萬輛共享單車;
(2)在扇形統(tǒng)計圖中,B區(qū)所對應扇形的圓心角為 °;
(3)該公司在全市投放的共享單車的使用量占投放量的85%,請計算C區(qū)共享單車的使用量并補全條形統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,的兩邊分別平行.
① ②
(1)在圖①中,與的數(shù)量關系是什么?為什么?
(2)在圖②中,與的數(shù)量關系是什么?為什么?
(3)由(1)(2)可得結論:________;
(4)應用:若兩個角的兩邊兩兩互相平行,其中一個角比另一個角的2倍少,求這兩個角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,點A的坐標為(-2,0),OB=OA,且∠AOB=120°.
(1)求經(jīng)過A、O、B三點的拋物線的解析式;
(2)在(1)中拋物線的對稱軸上是否存在點C,使△OBC的周長最小?若存在,求出點C的坐標;若不存在,請說明理由;
(3)若點M為拋物線上一點,點N為對稱軸上一點,是否存在點M、N使得A、O、M、N構成的四邊形是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖中網(wǎng)格上按要求畫出圖形,并回答問題:
(1)如果將三角形平移,使得點平移到圖中點位置,點、點的對應點分別為點、點,請畫出三角形;
(2)畫出三角形關于點成中心對稱的三角形.
(3)三角形與三角形______(填“是”或“否”)關于某個點成中心對稱?如果是,請在圖中畫出這個對稱中心,并記作點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com