【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).

(1)求拋物線的解析式;
(2)如圖2,過點(diǎn)A的直線與拋物線交于點(diǎn) E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點(diǎn)G為直線 PQ上的一動點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G,H、F四點(diǎn)所圍成的四邊形周長最小?若存在,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請說明理由;
(3)如圖3,在拋物線上是否存在一點(diǎn)T,過點(diǎn)T作x軸的垂線,垂足為點(diǎn)M,過點(diǎn)M作MN∥BD,交線段AD于點(diǎn)N,連接MD,使△DNM∽△BMD?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

【答案】
(1)

解:設(shè)拋物線的解析式為:y=a(x﹣1)2+4,

∵點(diǎn)B的坐標(biāo)為(3,0).

∴4a+4=0,

∴a=﹣1,

∴此拋物線的解析式為:y=﹣(x﹣1)2+4=﹣x2+2x+3


(2)

解:存在.

拋物線的對稱軸方程為:x=1,

∵點(diǎn)E的橫坐標(biāo)為2,

∴y=﹣4+4+3=3,

∴點(diǎn)E(2,3),

∴設(shè)直線AE的解析式為:y=kx+b,

,

,

∴直線AE的解析式為:y=x+1,

∴點(diǎn)F(0,1),

∵D(0,3),

∴D與E關(guān)于x=1對稱,

作F關(guān)于x軸的對稱點(diǎn)F′(0,﹣1),

連接EF′交x軸于H,交對稱軸x=1于G,

四邊形DFHG的周長即為最小,

設(shè)直線EF′的解析式為:y=mx+n,

解得: ,

∴直線EF′的解析式為:y=2x﹣1,

∴當(dāng)y=0時(shí),2x﹣1=0,得x= ,

即H( ,0),

當(dāng)x=1時(shí),y=1,

∴G(1,1);

∴DF=2,F(xiàn)H=F′H= = ,DG= = ,

∴使D、G,H、F四點(diǎn)所圍成的四邊形周長最小值為:DF+FH+GH+DG=2+ + + =2+2


(3)

解:存在.

∵BD= =3 ,

設(shè)M(c,0),

∵M(jìn)N∥BD,

,

=

∴MN= (1+c),DM=

要使△DNM∽△BMD,

,即DM2=BDMN,

可得:9+c2=3 × (1+c),

解得:c= 或c=3(舍去).

當(dāng)x= 時(shí),y=﹣( ﹣1)2+4=

∴存在,點(diǎn)T的坐標(biāo)為( ,


【解析】(1)設(shè)拋物線的解析式為:y=a(x﹣1)2+4,然后將點(diǎn)B的坐標(biāo)代入函數(shù)解析式即可求得此拋物線的解析式;(2)作F關(guān)于x軸的對稱點(diǎn)F′(0,﹣1),連接EF′交x軸于H,交對稱軸x=1于G,四邊形DFHG的周長即為最小,則根據(jù)題意即可求得這個(gè)最小值及點(diǎn)G、H的坐標(biāo);(3)首先設(shè)M的坐標(biāo)為(a,0),求得BD與DM的長,由平行線分線段成比例定理,求得MN的長,然后由相似三角形對應(yīng)邊成比例,即可得DM2=BDMN,則可得到關(guān)于a的一元二次方程,解方程即可求得答案.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點(diǎn),延長BC至點(diǎn)F,使CF= BC,連接CD和EF.

(1)求證:DE=CF;
(2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形ABCD中,點(diǎn)E、F分別為AB、AD的中點(diǎn),連接CE、CF.

(1)求證:CE=CF;
(2)如圖2,若H為AB上一點(diǎn),連接CH,使∠CHB=2∠ECB,求證:CH=AH+AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠計(jì)劃生產(chǎn)A,B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表:

A種產(chǎn)品

B種產(chǎn)品

成本(萬元∕件)

3

5

利潤(萬元∕件)

1

2


(1)若工廠計(jì)劃獲利14萬元,問A,B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?
(2)若工廠投入資金不多于44萬元,且獲利多于14萬元,問工廠有哪幾種生產(chǎn)方案?
(3)在(2)條件下,哪種方案獲利最大?并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的內(nèi)心在y軸上,點(diǎn)C的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)是(0,2),直線AC的解析式為 ,則tanA的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖題:
(1)如圖,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后得到△A1B1C1 . 請你畫出旋轉(zhuǎn)后的△A1B1C1;

(2)請你畫出下面“蒙古包”的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的分式方程 無解,則m的值為( )
A.-1.5
B.1
C.-1.5或2
D.-0.5或-1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC為⊙O的直徑,B為⊙O上一點(diǎn),∠ACB=30°,延長CB至點(diǎn)D,使得CB=BD,過點(diǎn)D作DE⊥AC,垂足E在CA的延長線上,連接BE.
(1)求證:BE是⊙O的切線;
(2)當(dāng)BE=3時(shí),求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,E,F(xiàn)是對角線BD上的兩點(diǎn),如果添加一個(gè)條件,使△ABE≌△CDF,則添加的條件不能為(
A.BE=DF
B.BF=DE
C.AE=CF
D.∠1=∠2

查看答案和解析>>

同步練習(xí)冊答案