【題目】如圖,AC為⊙O的直徑,B為⊙O上一點(diǎn),∠ACB=30°,延長(zhǎng)CB至點(diǎn)D,使得CB=BD,過(guò)點(diǎn)D作DE⊥AC,垂足E在CA的延長(zhǎng)線上,連接BE.
(1)求證:BE是⊙O的切線;
(2)當(dāng)BE=3時(shí),求圖中陰影部分的面積.

【答案】
(1)解:如圖所示,連接BO,

∵∠ACB=30°,

∴∠OBC=∠OCB=30°,

∵DE⊥AC,CB=BD,

∴Rt△DCE中,BE= CD=BC,

∴∠BEC=∠BCE=30°,

∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,

∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,

∴BE是⊙O的切線;


(2)解:當(dāng)BE=3時(shí),BC=3,

∵AC為⊙O的直徑,

∴∠ABC=90°,

又∵∠ACB=30°,

∴AB=tan30°×BC= ,

∴AC=2AB=2 ,AO= ,

∴陰影部分的面積=半圓的面積﹣Rt△ABC的面積= π×AO2 AB×BC= π×3﹣ × ×3=


【解析】(1)連接BO,根據(jù)△OBC和△BCE都是等腰三角形,即可得到∠BEC=∠OBC=∠OCB=30°,再根據(jù)三角形內(nèi)角和即可得到∠EBO=90°,進(jìn)而得出BE是⊙O的切線;(2)在Rt△ABC中,根據(jù)∠ACB=30°,BC=3,即可得到半圓的面積以及Rt△ABC的面積,進(jìn)而得到陰影部分的面積.
【考點(diǎn)精析】關(guān)于本題考查的扇形面積計(jì)算公式,需要了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年6月份,我市某果農(nóng)收獲荔枝30噸,香蕉13噸,現(xiàn)計(jì)劃租用甲、乙兩種貨車共10輛將這批水果全部運(yùn)往深圳,已知甲種貨車可裝荔枝4噸和香蕉1噸,乙種貨車可裝荔枝香蕉各2噸;

(1)該果農(nóng)安排甲、乙兩種貨車時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái);
(2)若甲種貨車每輛要付運(yùn)輸費(fèi)2000元,乙種貨車每輛要付運(yùn)輸費(fèi)1300元,則該果農(nóng)應(yīng)選擇哪種方案使運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).

(1)求拋物線的解析式;
(2)如圖2,過(guò)點(diǎn)A的直線與拋物線交于點(diǎn) E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為2,若直線PQ為拋物線的對(duì)稱軸,點(diǎn)G為直線 PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G,H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最。咳舸嬖冢蟪鲞@個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖3,在拋物線上是否存在一點(diǎn)T,過(guò)點(diǎn)T作x軸的垂線,垂足為點(diǎn)M,過(guò)點(diǎn)M作MN∥BD,交線段AD于點(diǎn)N,連接MD,使△DNM∽△BMD?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解該校七年級(jí)學(xué)生的身高情況,抽樣調(diào)查了部分同學(xué),將所得數(shù)據(jù)處理后,制成扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖(部分)如下(每組只含最低值不含最高值,身高單位:cm,測(cè)量時(shí)精確到1cm):

(1)請(qǐng)根據(jù)所提供的信息計(jì)算身高在160~165cm范圍內(nèi)的學(xué)生人數(shù),并補(bǔ)全頻數(shù)分布直方圖;
(2)樣本的中位數(shù)在統(tǒng)計(jì)圖的哪個(gè)范圍內(nèi)?
(3)如果上述樣本的平均數(shù)為157cm,方差為0.8;該校八年級(jí)學(xué)生身高的平均數(shù)為159cm,方差為0.6,那么(填“七年級(jí)”或“八年級(jí)”)學(xué)生的身高比較整齊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對(duì)角線AC,BD相交于點(diǎn)O,下列結(jié)論中: ①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對(duì)角;
④四邊形ABCD的面積S= ACBD.
正確的是(填寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊BC延長(zhǎng)線上一點(diǎn),連結(jié)DE,過(guò)頂點(diǎn)B作BF⊥DE,垂足為F,BF分別交AC于H,交BC于G.
(1)求證:BG=DE;
(2)若點(diǎn)G為CD的中點(diǎn),求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)B,C分別在x,y軸的正半軸上,頂點(diǎn)A在反比例函數(shù)y= (k為常數(shù),k>0,x>0)的圖象上,將矩形ABOC繞點(diǎn)A按逆時(shí)針?lè)聪蛐D(zhuǎn)90°得到矩形AB′O′C′,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O′恰好落在此反比例函數(shù)圖象上,則 的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點(diǎn)處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達(dá)E處,測(cè)得燈塔C在北偏東45°方向上,這時(shí),E處距離港口A有多遠(yuǎn)?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+c(a≠0)與y軸交于點(diǎn)A,與x軸交于B,C兩點(diǎn)(點(diǎn)C在x軸正半軸上),△ABC為等腰直角三角形,且面積為4,現(xiàn)將拋物線沿BA方向平移,平移后的拋物線過(guò)點(diǎn)C時(shí),與x軸的另一點(diǎn)為E,其頂點(diǎn)為F,對(duì)稱軸與x軸的交點(diǎn)為H.

(1)求a、c的值.
(2)連接OF,試判斷△OEF是否為等腰三角形,并說(shuō)明理由.
(3)現(xiàn)將一足夠大的三角板的直角頂點(diǎn)Q放在射線AF或射線HF上,一直角邊始終過(guò)點(diǎn)E,另一直角邊與y軸相交于點(diǎn)P,是否存在這樣的點(diǎn)Q,使以點(diǎn)P、Q、E為頂點(diǎn)的三角形與△POE全等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案