【題目】如圖,已知AB是⊙O的直徑,點C、D在⊙O上,∠D=60°且AB=6,過O點作OE⊥AC,垂足為E.
(1)求OE的長;
(2)若OE的延長線交⊙O于點F,求弦AF、AC和弧CF圍成的圖形(陰影部分)的面積S.
【答案】
(1)解:∵∠D=60°,
∴∠B=60°(圓周角定理),
又∵AB=6,
∴BC=3,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵OE⊥AC,
∴OE∥BC,
又∵點O是AB中點,
∴OE是△ABC的中位線,
∴OE= BC=
(2)解:連接OC,
則易得△COE≌△AFE,
故陰影部分的面積=扇形FOC的面積,
S扇形FOC= = π.
即可得陰影部分的面積為 π
【解析】(1)根據(jù)∠D=60°,可得出∠B=60°,繼而求出BC,判斷出OE是△ABC的中位線,就可得出OE的長;(2)連接OC,將陰影部分的面積轉(zhuǎn)化為扇形FOC的面積.
【考點精析】認真審題,首先需要了解含30度角的直角三角形(在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半),還要掌握垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E在BC邊上,且AE⊥BC于點E,DE平分∠CDA.若BE∶EC=1∶2,則∠BCD的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】周末,小明,小紅等同學隨父母一同去某景點旅游,在購買門票時,小明和小紅有圖1所示的對話,根據(jù)圖2的門票票價和圖1所示的對話內(nèi)容完成下列問題.
(1)他們一共去了幾個成人幾個學生?
(2)請你幫他們算一算,用哪種方式買票更省錢,省多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義一種新運算“⊕”:a⊕b=2a﹣ab,比如1⊕(﹣3)=2×1﹣1×(﹣3)=5
(1)求(﹣2)⊕3的值;
(2)若(﹣3)⊕x=(x+1)⊕5,求x的值;
(3)若x⊕1=2(1⊕y),求代數(shù)式x+y+1的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】世界讀書日,新華書店矩形購書優(yōu)惠活動:①一次性購書不超過100元,不享受打折優(yōu)惠;②一次性購書超過100元但不超過200元一律八折;③一次性購書200元以上一律打六折.小麗在這次活動中,兩次購書總共付款190.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是_____元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知正方形的邊長為4,甲、乙兩動點分別從正方形ABCD的頂點A、C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行,若乙的速度是甲的速度的3倍,則它們第2017次相遇在邊( )上.
A. AB B. BC C. CD D. DA
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.
證明:連結(jié)DB,過點D作BC邊上的高DF,則DF=EC=b﹣a,
∵S四邊形ADCB=S△ACD+S△ABC= 12 b2+ 12 ab.
又∵S四邊形ADCB=S△ADB+S△DCB= 12 c2+ 12 a(b﹣a)
∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E為AD上一點,FG⊥CE分別交AB、CD于F、G,垂足為O.
(1)求證:CE=FG;
(2)如圖2,連接OB,若AD=3DE,∠OBC=2∠DCE。
求的值;
若AD=3,則OE的長為_________(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下面文字,然后按要求解題.
例:1+2+3+…+100=?如果一個一個順次相加顯然太繁,我們仔細分析這100個連續(xù)自然數(shù)的規(guī)律和特點,可以發(fā)現(xiàn)運用加法的運算律,是可以大大簡化計算,提高計算速度的.
因為1+100=2+99=3+98=…=50+51=101,所以將所給算式中各加數(shù)經(jīng)過交換、結(jié)合以后,可以很快求出結(jié)果.
解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)==5050.
(1)補全例題解題過程;
(2)計算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com