【題目】如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達(dá)A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達(dá)A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

【答案】C
【解析】解:由題意可得BQ=x.
① 0≤x≤1時,P點在BC邊上,BP=3x,
則△BPQ的面積= BPBQ,
解y= 3xx= x2;故A選項錯誤;
②1<x≤2時,P點在CD邊上,
則△BPQ的面積= BQBC,
解y= x3= x;故B選項錯誤;
③2<x≤3時,P點在AD邊上,AP=9﹣3x,
則△BPQ的面積= APBQ,
解y= (9﹣3x)x= x﹣ x2;故D選項錯誤.
故選:C.
【考點精析】利用函數(shù)的圖象對題目進(jìn)行判斷即可得到答案,需要熟知函數(shù)的圖像是由直角坐標(biāo)系中的一系列點組成;圖像上每一點坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα= ,tan ,以O(shè)為原點,OA所在直線為x軸建立直角坐標(biāo)系.
(1)求點P的坐標(biāo);
(2)水面上升1m,水面寬多少( 取1.41,結(jié)果精確到0.1m)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=kx+b經(jīng)過點A(5,0),B(1,4).

(1)求直線AB的解析式;

(2)若直線y=2x﹣4與直線AB相交于點C,求點C的坐標(biāo);

(3)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:CD是⊙O的直徑,線段AB過圓心O,且OA=OB= ,CD=2,連接AC、AD、BD、BC、AD、CB分別交⊙O于E、F.
(1)問四邊形CEDF是何種特殊四邊形?請證明你的結(jié)論;
(2)當(dāng)AC與⊙O相切時,四邊形CEDF是正方形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù):x1,x2,x3,x4,x5,x6的平均數(shù)是2,方差是3,則另一組數(shù)據(jù):3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2,3x6﹣2的平均數(shù)和方差分別是( 。

A. 2,3 B. 2,9 C. 4,25 D. 4,27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,弦AD平分∠BAC,交BC于點E,AB=6,AD=5,則AE的長為(
A.2.5
B.2.8
C.3
D.3.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,弦AD平分∠BAC,交BC于點E,AB=6,AD=5,則AE的長為(
A.2.5
B.2.8
C.3
D.3.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知A點從(1,0)點出發(fā),以每秒1個單位長的速度沿著x軸的正方向運動,經(jīng)過t秒后,以O(shè)、A為頂點作菱形OABC,使B、C點都在第一象限內(nèi),且∠AOC=60°,又以P(0,4)為圓心,PC為半徑的圓恰好與OA所在的直線相切,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l上擺放著兩塊大小相同的直角三角形△ABC和△ECD,∠ACB=∠DCE=90°,且BC=CE=3AC=CD=4,將△ECD繞點C逆時針旋轉(zhuǎn)到△E1CD1位置,且D1E1∥l ,則B、E1兩點之間的距離為___________.

查看答案和解析>>

同步練習(xí)冊答案