【題目】已知直線y=kx+b經(jīng)過點(diǎn)A(5,0),B(1,4).

(1)求直線AB的解析式;

(2)若直線y=2x﹣4與直線AB相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);

(3)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>kx+b的解集.

【答案】1y=-x+5;(2)點(diǎn)C3,2);(3x3

【解析】試題分析:(1)利用待定系數(shù)法把點(diǎn)A5,0),B1,4)代入y=kx+b可得關(guān)于k、b得方程組,再解方程組即可;

2)聯(lián)立兩個(gè)函數(shù)解析式,再解方程組即可;

3)根據(jù)C點(diǎn)坐標(biāo)可直接得到答案.

試題解析:(1直線y=kx+b經(jīng)過點(diǎn)A5,0),B14),

,

解得,

直線AB的解析式為:y=-x+5;

2若直線y=2x-4與直線AB相交于點(diǎn)C,

解得,

點(diǎn)C3,2);

3)根據(jù)圖象可得x3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)O是直線AB上的一點(diǎn),∠COE=90°,OF是∠AOE的平分線.

(1)當(dāng)點(diǎn)C,E,F(xiàn)在直線AB的同側(cè)時(shí)(如圖①所示),試說明∠BOE=2∠COF.

(2)當(dāng)點(diǎn)C與點(diǎn)E,F(xiàn)在直線AB的兩側(cè)時(shí)(如圖②所示),(1)中的結(jié)論是否仍然成立?請(qǐng)給出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(jí)(1)班體育委員統(tǒng)計(jì)了全班同學(xué)60秒跳繩次數(shù),并列出了下面的不完整頻數(shù)分布表和不完整的頻數(shù)分布直方圖.根據(jù)圖表中的信息解答問題

組別

跳繩次數(shù)

頻數(shù)

A

60≤x<80

2

B

80≤x<100

6

C

100≤x<120

18

D

120≤x<140

12

E

140≤x<160

a

F

160≤x<180

3

G

180≤x<200

1

合計(jì)

50

(1)求a的值;

(2)求跳繩次數(shù)x120≤x<180范圍內(nèi)的學(xué)生的人數(shù);

(3)補(bǔ)全頻數(shù)分布直方圖,并指出組距與組數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(jí)(1)班體育委員統(tǒng)計(jì)了全班同學(xué)60秒跳繩次數(shù),并列出了下面的不完整頻數(shù)分布表和不完整的頻數(shù)分布直方圖.根據(jù)圖表中的信息解答問題

組別

跳繩次數(shù)

頻數(shù)

A

60≤x<80

2

B

80≤x<100

6

C

100≤x<120

18

D

120≤x<140

12

E

140≤x<160

a

F

160≤x<180

3

G

180≤x<200

1

合計(jì)

50

(1)求a的值;

(2)求跳繩次數(shù)x120≤x<180范圍內(nèi)的學(xué)生的人數(shù);

(3)補(bǔ)全頻數(shù)分布直方圖,并指出組距與組數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程2x﹣3﹣m=2的解和方程3x﹣7=2x的解相同.

1)求m的值;

2)已知線段AB=m,在直線AB上取一點(diǎn)P,恰好使AP=2PB,點(diǎn)QPB的中點(diǎn),求線段AQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛自行車,前胎行駛6000km就不能繼續(xù)使用,后胎行駛4000km就不能繼續(xù)使用,若在行駛中合理交換前后胎,則最多可以行駛_____km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一根繩子對(duì)折成線段AB,從點(diǎn)P處把繩子剪斷,已知APBP=2:3,若剪斷后的各段繩子中最長(zhǎng)的一段為60 cm,求繩子的原長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB是⊙O的直徑,DA、DC分別是⊙O的切線,點(diǎn)A、C是切點(diǎn),連接DO交弧AC于點(diǎn)E,連接AE、CE.

(1)如圖1,求證:EA=EC;
(2)如圖2,延長(zhǎng)DO交⊙O于點(diǎn)F,連接CF、BE交于點(diǎn)G,求證:∠CGE=2∠F;
(3)如圖3,在(2)的條件下,DE=AD,EF=2 , 求線段CG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案