如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓弧.

(1)請(qǐng)你確定弧AB的中點(diǎn);(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)

(2)若∠AOB=120°,OA=4 m,請(qǐng)求出石拱橋的高度.

答案:
解析:

  解:(1)略;

  (2)答:石拱橋的高度為2 m.

  如圖,因?yàn)镺C⊥AB,OA=OB,根據(jù)等腰三角形三線合一,得∠AOD=∠AOB=60°,

  所以∠OAD=30°.

  所以O(shè)D=OA=2 m.

  所以CD=OC-OD=2(m).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓。
(1)請(qǐng)你確定弧AB的中點(diǎn);(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)若∠AOB=120°,OA=4米,請(qǐng)求出石拱橋的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓弧.
(1)請(qǐng)你確定弧AB的中點(diǎn);(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)如果已知石拱橋的橋拱的跨度(即弧所對(duì)的弦長)為24米,拱高(即弧的中點(diǎn)到弦的距離)為8米,求橋拱所在圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓。簟螦OB=120°,OA=4米,請(qǐng)求出石拱橋的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓。
(1)請(qǐng)你確定弧AB的中點(diǎn);(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)若∠AOB=120°,OA=4米,請(qǐng)求出石拱橋的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•宜昌)如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓。
(1)請(qǐng)你確定弧AB的中點(diǎn);(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)若∠AOB=120°,OA=4米,請(qǐng)求出石拱橋的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案