【題目】某手機(jī)經(jīng)銷(xiāo)商計(jì)劃同時(shí)購(gòu)進(jìn)一批甲、乙兩種型號(hào)手機(jī),若購(gòu)進(jìn)2部甲型號(hào)手機(jī)和5部乙型號(hào)手機(jī),共需要資金6000元;若購(gòu)進(jìn)3部甲型手機(jī)和2部乙型手機(jī),共需要資金4600元.
(1) 求甲、乙型號(hào)手機(jī)每部進(jìn)價(jià)為多少元?
(2) 為了提高利潤(rùn),該店計(jì)劃購(gòu)進(jìn)甲、乙型號(hào)手機(jī)銷(xiāo)售,預(yù)計(jì)用不多于1.84萬(wàn)元且不少于1.76萬(wàn)元的資金購(gòu)進(jìn)這兩種手機(jī)共20部,請(qǐng)問(wèn)有幾種進(jìn)貨方案?
【答案】(1)購(gòu)進(jìn)一部甲型手機(jī)和一部乙型手機(jī)分別為1000元,800元;(2)即共有3種方案: 購(gòu)進(jìn)甲 8部,購(gòu)進(jìn)乙12部;購(gòu)進(jìn)甲9部,購(gòu)進(jìn)乙 11部;購(gòu)進(jìn)甲10部,購(gòu)進(jìn)乙 10部.
【解析】
(1)設(shè)購(gòu)進(jìn)一部甲型手機(jī)和一部乙型手機(jī)分別為x元、y元,根據(jù)題中的兩個(gè)等量關(guān)系:①購(gòu)買(mǎi)2部甲型手機(jī)的費(fèi)用+購(gòu)買(mǎi)5部乙型手機(jī)的費(fèi)用=6000;②購(gòu)買(mǎi)3部甲型手機(jī)的費(fèi)用+購(gòu)買(mǎi)2部乙型手機(jī)的費(fèi)用=4600列出方程組,解方程組即可求得本題答案;
(2)設(shè)購(gòu)進(jìn)甲型手機(jī)a部,則購(gòu)進(jìn)乙型手機(jī)(20-a)部,結(jié)合(1)中所得兩種型號(hào)手機(jī)的單價(jià),表示出購(gòu)買(mǎi)這些手機(jī)所需的總費(fèi)用,結(jié)合題中已知條件:總費(fèi)用不超過(guò)1.84萬(wàn)元和不少于1.76萬(wàn)元列出不等式組,解不等式組求得整數(shù)解即可得到所求進(jìn)貨方案;
(1)設(shè)購(gòu)進(jìn)一部甲型手機(jī)和一部乙型手機(jī)分別需要x元、y元, 根據(jù)題意得:
,
解方程組得:,
答:購(gòu)進(jìn)一部甲型手機(jī)和一部乙型手機(jī)分別需要1000元,800元.
(2)設(shè)購(gòu)進(jìn)甲型手機(jī)a部,則購(gòu)進(jìn)乙型手機(jī)(180-a)部,根據(jù)題意得:
,
解不等式組得:,
∵a只能取整數(shù),
∴=8,9或10 ;
即共有3種方案: ①購(gòu)進(jìn)甲 8部,乙12部;②購(gòu)進(jìn)甲9部,乙 11部;③購(gòu)進(jìn)甲 10部,乙 10部.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,BC=4,∠B=60°,點(diǎn)E是邊AB上的一點(diǎn),點(diǎn)F是邊CD上一點(diǎn),將平行四邊形ABCD沿EF折疊,得到四邊形EFGC,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)C,點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)G,則△CEF的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,C為線段BE上的一點(diǎn),分別以BC和CE為邊在BE的同側(cè)作正方形ABCD和正方形CEFG,M、N分別是線段AF和GD的中點(diǎn),連接MN
(1)線段MN和GD的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)將圖①中的正方形CEFG繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,其他條件不變,如圖②,(1)的結(jié)論是否成立?說(shuō)明理由;
(3)已知BC=7,CE=3,將圖①中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn)一周,其他條件不變,直接寫(xiě)出MN的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小張同學(xué)學(xué)完統(tǒng)計(jì)知識(shí)后,隨機(jī)調(diào)查了她所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
請(qǐng)根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)小張同學(xué)共調(diào)查了 名居民的年齡,扇形統(tǒng)計(jì)圖中a= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并注明人數(shù);
(3)若該轄區(qū)年齡在0~14歲的居民約有3500人,請(qǐng)估計(jì)該轄區(qū)居民人數(shù)是多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,設(shè)一質(zhì)點(diǎn)M自P0(1,0)處向上運(yùn)動(dòng)1個(gè)單位至P1(1,1),然后向左運(yùn)動(dòng)2個(gè)單位至P2處,再向下運(yùn)動(dòng)3個(gè)單位至P3處,再向右運(yùn)動(dòng)4個(gè)單位至P4處,再向上運(yùn)動(dòng)5個(gè)單位至P5處,……如此繼續(xù)運(yùn)動(dòng)下去.設(shè)Pn(xn,yn),n=1、2、3、……,則x1+x2+……+x2014+x2015的值為( )
A. 1 B. 3 C. -1 D. 2015
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知AD∥BC,∠B=∠D.
(1)求證:AB∥CD;
(2)如圖2,點(diǎn)E為BA延長(zhǎng)線上一點(diǎn),∠EAD與∠BCD的角平分線交于點(diǎn)P.
①求∠APC的度數(shù);
②連接DP,若∠PDC=750,則∠DPC-∠B=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我市某中學(xué)在創(chuàng)建“特色校園”的活動(dòng)中,將奉校的辦學(xué)理念做成宣傳牌(CD),放置在教學(xué)樓的頂部(如圖所示)該中學(xué)數(shù)學(xué)活動(dòng)小組在山坡的坡腳A處測(cè)得宣傳牌底部D的仰角為60°,沿坡面AB向上走到B處測(cè)得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度為i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平而AE的高度BH;
(2)求宣傳牌CD的高度.
(結(jié)果精確到0.1米.參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形紙片ABCD中,EF∥AD,M,N是線段EF的六等分點(diǎn),若把該正方形紙片卷成一個(gè)圓柱,使點(diǎn)A與點(diǎn)D重合,此時(shí),底面圓的直徑為10cm,則圓柱上M,N兩點(diǎn)間的距離是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD中,∠C=72°,∠D=81°.沿EF折疊四邊形,使點(diǎn)A、B分別落在四邊形內(nèi)部的點(diǎn)A′、B′處,則∠1+∠2=°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com