【題目】如圖所示,正方形網(wǎng)格中,ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上)

(1)把ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫(huà)出平移后得到的A1B1C1;

(2)把A1B1C1繞點(diǎn)A1按逆時(shí)針?lè)较蛐D(zhuǎn)90°,在網(wǎng)格中畫(huà)出旋轉(zhuǎn)后的A1B2C2;

(3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(guò)(1)、(2)變換的路徑總長(zhǎng)

【答案】(1)(2)作圖見(jiàn)解析;(3)

【解析】

試題(1)利用平移的性質(zhì)畫(huà)圖,即對(duì)應(yīng)點(diǎn)都移動(dòng)相同的距離

(2)利用旋轉(zhuǎn)的性質(zhì)畫(huà)圖,對(duì)應(yīng)點(diǎn)都旋轉(zhuǎn)相同的角度

(3)利用勾股定理和弧長(zhǎng)公式求點(diǎn)B經(jīng)過(guò)(1)、(2)變換的路徑總長(zhǎng)

試題解析:解:(1)如答圖,連接AA1,然后從C點(diǎn)作AA1的平行線且A1C1=AC同理找到點(diǎn)B1,分別連接三點(diǎn),A1B1C1即為所求

(2)如答圖,分別將A1B1,A1C1繞點(diǎn)A1按逆時(shí)針?lè)较蛐D(zhuǎn)90°,得到B2C2,連接B2C2A1B2C2即為所求

(3),

點(diǎn)B所走的路徑總長(zhǎng)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo),過(guò)點(diǎn)作軸,垂足為點(diǎn),過(guò)點(diǎn)作直線軸,點(diǎn)從點(diǎn)出發(fā)在軸上沿著軸的正方向運(yùn)動(dòng).

1)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)處,過(guò)點(diǎn)的垂線交直線于點(diǎn),證明,并求此時(shí)點(diǎn)的坐標(biāo);

2)點(diǎn)是直線上的動(dòng)點(diǎn),問(wèn)是否存在點(diǎn),使得以為頂點(diǎn)的三角形和全等,若存在求點(diǎn)的坐標(biāo)以及此時(shí)對(duì)應(yīng)的點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示.在△ABC中,內(nèi)角∠BAC與外角∠CBE的平分線相交于點(diǎn)P,BE=BC,PBCE交于點(diǎn)HPGADBCF,交ABG,連接CP.下列結(jié)論:ACB=2APB;SPACSPAB=ACAB;BP垂直平分CE;PCF=CPF.其中,正確的有( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列括號(hào)內(nèi)填理由:已知:如圖,ACDECDEF分別為∠ACB、∠DEB的平分線.

求證:CDEF

證明:∵ACDE〔已知)

CDEF分別為∠ACB、∠DEB的平分線.(已知)

∴∠DCB=∠FEB

CDEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是邊長(zhǎng)為6 cm的等邊三角形,動(dòng)點(diǎn)PA出發(fā),以3 cm/s的速度,沿A-B-CC運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)QC出發(fā)沿CA方向以1 cm/s的速度向A運(yùn)動(dòng),當(dāng)其中一點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t= ____s,△APQ是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么這個(gè)三角形叫“恰等三角形”,這條中線叫“恰等中線”.

(直角三角形中的“恰等中線”)

(1)如圖1,在△ABC中,∠C=90°,AC,BC=2,AM為△ABC的中線.求證:AM是“恰等中線”.

(等腰三角形中的“恰等中線”)

2)已知,等腰△ABC是“恰等三角形”,ABAC20,求底邊BC的平方.

(一般三角形中的“恰等中線”)

3)如圖2,若AM是△ABC的“恰等中線”,則BC2AB2,AC2之間的數(shù)量關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“五一”期間,文具店老板購(gòu)進(jìn)100只兩種型號(hào)的文具進(jìn)行銷(xiāo)售,其進(jìn)價(jià)和售價(jià)之間的關(guān)系如下表:

型號(hào)

進(jìn)價(jià)(元/只)

售價(jià)(元/只)

A型

10

14

B型

15

22

(1)老板如何進(jìn)貨,能使進(jìn)貨款恰好為1350元?

(2)要使銷(xiāo)售文具所獲利潤(rùn)不少于500元,那么老板最多能購(gòu)進(jìn)A型文具多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABACCD平分∠ACBAB于點(diǎn)D,AEDCBC的延長(zhǎng)線于點(diǎn)E,已知∠BAC32°,求∠E的度數(shù)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】凱里市某文具店某種型號(hào)的計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買(mǎi)優(yōu)惠,優(yōu)勢(shì)方法是:凡是一次買(mǎi)10只以上的,每多買(mǎi)一只,所買(mǎi)的全部計(jì)算器每只就降價(jià)0.1元,例如:某人買(mǎi)18只計(jì)算器,于是每只降價(jià)0.1×(18﹣10)=0.8(元),因此所買(mǎi)的18只計(jì)算器都按每只19.2元的價(jià)格購(gòu)買(mǎi),但是每只計(jì)算器的最低售價(jià)為16元.

(1)求一次至少購(gòu)買(mǎi)多少只計(jì)算器,才能以最低價(jià)購(gòu)買(mǎi)?

(2)求寫(xiě)出該文具店一次銷(xiāo)售x(x10)只時(shí),所獲利潤(rùn)y(元)與x(只)之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(3)一天,甲顧客購(gòu)買(mǎi)了46只,乙顧客購(gòu)買(mǎi)了50只,店主發(fā)現(xiàn)賣(mài)46只賺的錢(qián)反而比賣(mài)50只賺的錢(qián)多,請(qǐng)你說(shuō)明發(fā)生這一現(xiàn)象的原因;當(dāng)10x50時(shí),為了獲得最大利潤(rùn),店家一次應(yīng)賣(mài)多少只?這時(shí)的售價(jià)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案