【題目】某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進價分別是多少元?
(2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?
【答案】解:設(shè)甲種玩具進價x元/件,則乙種玩具進價為(40-x)元/件,
,
經(jīng)檢驗x=15是原方程的解.
∴5.
甲,乙兩種玩具分別是15元/件,25元/件;
(2)設(shè)購進甲種玩具y件,則購進乙種玩具(48-y)件,
解得.
因為y是整數(shù),所以y取20,21,22,23.
共有四種方案.
【解析】
試題(1)設(shè)甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,根據(jù)已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同可列方程求解.
(2)設(shè)購進甲種玩具y件,則購進乙種玩具(48﹣y)件,根據(jù)甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,可列出不等式組求解.
試題解析:設(shè)甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,
x=15,
經(jīng)檢驗x=15是原方程的解.
∴40﹣x=25.
甲,乙兩種玩具分別是15元/件,25元/件;
(2)設(shè)購進甲種玩具y件,則購進乙種玩具(48﹣y)件,
,
解得20≤y<24.
因為y是整數(shù),甲種玩具的件數(shù)少于乙種玩具的件數(shù),
∴y取20,21,22,23,
共有4種方案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星期日早晨,小青從家出發(fā)勻速去森林公園溜冰,小青出發(fā)一段時間后,他媽媽發(fā)現(xiàn)小青忘帶了溜冰鞋,于是立即騎自行車沿小青行進的路線勻速去追趕,媽媽追上小青后,立即沿原路線勻速返回家,但由于路上行人漸多,媽媽返回時騎車的速度只是原來速度的三分之二,小青繼續(xù)以原速度步行前往森林公園,媽媽與小青之間的路程米與小青從家出發(fā)后步行的時間分之間的關(guān)系如圖所示,當(dāng)媽媽剛回到家時,小青到森林公園的路程還有______米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是⊙ 的直徑, 為⊙ 的弦,過點 作 ⊥ ,交 的延長線于點 .點 在 上,且 .
(1)求證:直線 是⊙ 的切線;
(2)若 , ,求 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD被兩條與邊平行的線段EF,GH分割成四個小長方形,EF與GH交于點P,設(shè)BF長為a,BG長為b,△GBF的周長為m,
(1)①用含a,b,m的式子表示GF的長為 ;
②用含a,b的式子表示長方形EPHD的面積為 ;
(2)已知直角三角形兩直角邊的平方和等于斜邊的平方,
例如在圖1,△ABC中,∠ABC=900,則,
請用上述知識解決下列問題:
①寫出a,b,m滿足的等式 ;
②若m=1,求長方形EPHD的面積;
③當(dāng)m滿足什么條件時,長方形EPHD的面積是一個常數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的函數(shù)圖象反映的過程是:李大爺每天早上都到公園鍛煉,他從家去公園鍛煉一會兒,又去了菜市場后馬上回家,其中表示時間,表示李大爺離他家的距離。
(1)李大爺家到公園的距離是多少千米,他在公園銀煉了多少小時;
(2)李大爺從菜市場回家的平均速度;
(3)李大爺從家到菜市場的平均速度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE,則∠AEB的度數(shù)為__________.
(2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE.求∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你知道為什么任何無限循環(huán)小數(shù)都可以寫成分?jǐn)?shù)形式嗎?下面的解答會告訴你方法.
(1)閱讀下列材料:
問題:利用一元一次方程將化成分?jǐn)?shù).
解:設(shè).
方程兩邊都乘以10,可得.
由和,可得即.(請你體會將方程兩邊都乘以10起到的作用)
解得,即.
填空:將0.寫成分?jǐn)?shù)形式為 .
(2)請你仿照上述方法把小數(shù)1.化成分?jǐn)?shù),要求寫出利用一元一次方程進行解答的過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年三班的小雨同學(xué)想了解本校九年級學(xué)生對哪門課程感興趣,隨機抽取了部分九年級學(xué)生進行調(diào)查(每名學(xué)生必只能選擇一門課程).將獲得的數(shù)據(jù)整理繪制如下兩幅不完整的統(tǒng)計圖.
據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)在這次調(diào)查中一共抽取了 名學(xué)生,m的值是 .
(2)請根據(jù)據(jù)以上信息直在答題卡上補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中,“數(shù)學(xué)”所對應(yīng)的圓心角度數(shù)是 度;
(4)若該校九年級共有1000名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果,請你估計該校九年級學(xué)生中有多少名學(xué)生對數(shù)學(xué)感興趣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC和△A1B1C1關(guān)于x軸成軸對稱,畫出△A1B1C1
(2)點C1的坐標(biāo)為_________,△ABC的面積為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com