【題目】如圖, 是⊙ 的直徑, 為⊙ 的弦,過(guò)點(diǎn) ,交 的延長(zhǎng)線(xiàn)于點(diǎn) .點(diǎn) 上,且

(1)求證:直線(xiàn) 是⊙ 的切線(xiàn);
(2)若 , ,求 的長(zhǎng).

【答案】
(1)證明:連結(jié)OB.

∵OA=OB,∴∠A=∠OBA,

又∵BC=PC,

∴∠P=∠CBP,

∵OP⊥AD,

∴∠A+∠P=90°,

∴∠OBA+∠CBP=90°,

∴∠OBC=180°﹣(∠OBA+∠CBP)=90°,

∵點(diǎn)B在⊙O上,

∴直線(xiàn)BC是⊙O的切線(xiàn),


(2)解:如圖,

連結(jié)DB.

∵AD是⊙O的直徑,

∴∠ABD=90°,

∴Rt△ABD∽R(shí)t△AOP,

,即 ,AP=9,

∴BP=AP﹣BA=9﹣2=7.


【解析】(1)由OA=OB,得到∠A=∠OBA,又BC=PC,得到∠P=∠CBP,由OP⊥AD和三角形內(nèi)角和定理,求出∠OBC=90°,得到直線(xiàn)BC是⊙O的切線(xiàn);(2)由AD是⊙O的直徑,得到兩個(gè)直角三角形Rt△ABD∽R(shí)t△AOP,得到比例,求出AP的值,得到BP=AP﹣BA的值.
【考點(diǎn)精析】本題主要考查了相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是100元時(shí),每天的銷(xiāo)售量是50件,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5件,但要求銷(xiāo)售單價(jià)不得低于成本.
(1)求出每天的銷(xiāo)售利潤(rùn)y(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求出銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)如果該企業(yè)要使每天的銷(xiāo)售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷(xiāo)售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷(xiāo)售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(1,1),B(3,1),C(3,﹣1),D(1,﹣1)構(gòu)成正方形ABCD,以AB為邊做等邊△ABE,則∠ADE和點(diǎn)E的坐標(biāo)分別為( 。

A. 15°和(2,1+

B. 75°和(2,﹣1)

C. 15°和(2,1+)或75°和(2,﹣1)

D. 15°和(2,1+)或75°和(2,1﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,BE平分∠ABCAD于點(diǎn)E,已知BC7cm,CD5cm,∠D60°,則下列說(shuō)法錯(cuò)誤的是( 。

A. C120°B. BED120°C. AE5cmD. ED2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,∠A=140°,∠D=80°.

(1)如圖,若∠B=∠C,試求出∠C的度數(shù);

(2)如圖,若∠ABC的角平分線(xiàn)交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù);

(3)如圖,若∠ABC∠BCD的角平分線(xiàn)交于點(diǎn)E,試求出∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好地保護(hù)環(huán)境,某市污水處理廠(chǎng)決定先購(gòu)買(mǎi)A,B兩型污水處理設(shè)備共20臺(tái),對(duì)周邊污水進(jìn)行處理,每臺(tái)A型污水處理設(shè)備12萬(wàn)元,每臺(tái)B型污水處理設(shè)備10萬(wàn)元.已知2臺(tái)A型污水處理設(shè)備和1臺(tái)B型污水處理設(shè)備每周可以處理污水680噸,4臺(tái)A型污水處理設(shè)備和3臺(tái)B型污水處理設(shè)備每周可以處理污水1560噸.

1)求A、B兩型污水處理設(shè)備每周每臺(tái)分別可以處理污水多少?lài)崳?/span>

2)經(jīng)預(yù)算,市污水處理廠(chǎng)購(gòu)買(mǎi)設(shè)備的資金不超過(guò)230萬(wàn)元,每周處理污水的量不低于4500噸,請(qǐng)你列舉出所有購(gòu)買(mǎi)方案.

3)如果你是廠(chǎng)長(zhǎng),從節(jié)約資金的角度來(lái)談?wù)勀銜?huì)選擇哪種方案并說(shuō)明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù) 的圖像與 軸交于點(diǎn) 、 ,與 軸交于點(diǎn) .

(1)求二次函數(shù)的表達(dá)式;
(2)設(shè)上述拋物線(xiàn)的對(duì)稱(chēng)軸 軸交于點(diǎn) ,過(guò)點(diǎn) , 為線(xiàn)段
上一點(diǎn), 軸負(fù)半軸上一點(diǎn),以 、 為頂點(diǎn)的三角形與 相似;
滿(mǎn)足條件的 點(diǎn)有且只有一個(gè)時(shí),求 的取值范圍;
②若滿(mǎn)足條件的 點(diǎn)有且只有兩個(gè),直接寫(xiě)出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購(gòu)進(jìn)甲種玩具的件數(shù)與用150元購(gòu)進(jìn)乙種玩具的件數(shù)相同.

1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?

2)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場(chǎng)決定此次進(jìn)貨的總資金不超過(guò)1000元,求商場(chǎng)共有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,,ACBD相交于點(diǎn)O,ECD上一點(diǎn),FOD上一點(diǎn),且∠1=∠A

1)求證:;

2)若∠BFE=110°,A=60°,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案