【題目】小華思考解決如下問題:
原題:如圖1,點P,Q分別在菱形ABCD的邊BC,CD上,∠PAQ=∠B,求證:AP=AQ.
(1)小華進行探索,若將點P,Q的位置特殊化:把∠PAQ繞點A旋轉(zhuǎn)得到∠EAF,使AE⊥BC,點E、F分別在邊BC、CD上,如圖2.此時她證明了AE=AF,請你證明;
(2)由以上(1)的啟發(fā),在原題中,添加輔助線:如圖3,作AE⊥BC,AF⊥CD,垂足分別為E,F.請你繼續(xù)完成原題的證明;
(3)如果在原題中添加條件:AB=4,∠B=60°,如圖1,求四邊形APCQ的周長的最小值.
【答案】(1)見解析;(2)見解析;(3).
【解析】
(1)根據(jù)四邊形ABCD是菱形,首先證明∠B=∠D,AB=AD,再結(jié)合題意證明,進而證明△AEB≌△AFD,即可證明AE=AF.
(2)根據(jù)(1)的證明,再證明△AEP≌△AFQ(ASA),進而證明AP=AQ.
(3)根據(jù)題意連接AC,則可證明△ABC為等邊三角形,再計算AE的長度,則可計算長APCQ的周長的最小值.
(1)證明:如圖2,∵四邊形ABCD是菱形,
∴∠B+∠C=180°,∠B=∠D,AB=AD,
∵∠EAF=∠B,
∴∠EAF+∠C=180°,
∴∠AEC+∠AFC=180°,
∵AE⊥BC,
∴AF⊥CD,
在△AEB和△AFD中,
,
∴△AEB≌△AFD(AAS),
∴AE=AF;
(2)證明:如圖3,由(1)得,∠PAQ=∠EAF=∠B,AE=AF,
∴∠EAP=∠FAQ,
在△AEP和△AFQ中,
,
∴△AEP≌△AFQ(ASA),
∴AP=AQ;
(3)解:如圖4,連接AC,
∵∠ABC=60°,BA=BC=4,
∴△ABC為等邊三角形,
∵AE⊥BC,
∴BE=EC=2,
同理,CF=FD=2,
∴AE= =2 ,
∴四邊形APCQ的周長=AP+PC+CQ+AQ=2AP+CP+CF+FQ=2AP+2CF,
∵CF是定值,當AP最小時,四邊形APCQ的周長最小,
∴當AP=AE時,四邊形APCQ的周長最小,此時四邊形APCQ的周長的最小值=2×2+4=4+4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABOC放置在直角坐標系中,點A(10,4),點B(6,0),反比例函數(shù)y=(x>0)的圖象經(jīng)過點C.
(1)求該反比例函數(shù)的表達式.
(2)記AB的中點為D,請判斷點D是否在該反比例函數(shù)的圖象上,并說明理由.
(3)若P(a,b)是反比例函數(shù)y=的圖象(x>0)的一點,且S△POC<S△DOC,則a的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD 中,∠ADB=90°,點 E 為 AB 邊的中點,點 F 為CD 邊的中點.
(1)求證:四邊形 DEBF 是菱形;
(2)當∠A 等于多少度時,四邊形 DEBF 是正方形?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,3).
(1)求這個函數(shù)的解析式;
(2)判斷點B(-1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;
(3)當-3<x<-1時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】老師在黑板上出了一道解方程的題,小明馬上舉手,要求到黑板上做,他是這樣做的:
……………… …①
…………………… …②
…………………… …③
………………………………… ④
………………………………… ⑤
老師說:小明解一元一次方程的一般步驟都知道卻沒有掌握好,因此解題時有一步出現(xiàn)了錯誤,請你指出他錯在 (填編號);
然后,你自己細心地解下面的方程:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明用木棒和硬幣拼成如圖所示的“列車”形狀,第個圖需要根木棒,枚硬幣,第個圖需要根木棒,枚硬幣,照這樣的方式擺下去,第個圖需要________根木棒,______枚硬幣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學對全校1200名學生進行“校園安全知識”的教育活動,從1200名學生中隨機抽取部分學生進行測試,成績評定按從高分到低分排列分為, , , 四個等級,繪制了圖①、圖②兩幅不完整的統(tǒng)計圖.請結(jié)合圖中所給信息解答下列問題:
(1)求本次被抽查的學生共有多少名?
(2)將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;
(3)求扇形統(tǒng)計圖中“”所在的扇形圓心角的度數(shù);
(4)估計全!”等級的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+3與x軸、y軸分別相交于A、C兩點,過點B(6,0),E(0,﹣6)的直線上有一點P,滿足∠PCA=135°.
(1)求證:四邊形ACPB是平行四邊形;
(2)求直線BE的解析式及點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人民生活水平的提高,汽車進入家庭的越來越多.我市某小區(qū)在2007年底擁有家庭轎車64輛,到了2009年底,家庭轎車數(shù)為100輛.
(1)若平均每年轎車數(shù)的增長率相同,求這個增長率.
(2)為了緩解停車矛盾,多增加一些車位,該小區(qū)決定投資15萬元,再造一些停車位.據(jù)測算,建造一個室內(nèi)停車位,需5000元;建造一個室外停車位,需1000元.按實際情況考慮,計劃室外停車位數(shù)不少于室內(nèi)車位的2倍,又不能超過室內(nèi)車位的2.5倍.問,該小區(qū)有哪幾種建造方案?應選擇哪種方案最合理?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com