【題目】如圖,在△ABC中,AB=AC,DE垂直平分AB.
(1)若AB=AC=10cm,BC=6cm,求△BCE的周長;
(2)若∠A=40°,求∠EBC的度數(shù).
【答案】(1)16cm;(2)30°.
【解析】
(1)已知DE垂直平分AB,根據(jù)線段垂直平分線的性質可得EA=EB,再由△BCE的周長=BC+CE+BE=BC+CE+AE=BC+AC即可求得△BCE的周長;(2)已知AB=AC,∠A=40°,根據(jù)等腰三角形的性質及三角形的內角和定理可得∠ABC=∠C=70°,再由EA=EB,∠A=40°,根據(jù)等腰三角形的性質可得∠A=∠ABE=40°;由∠EBC=∠ABC-∠ABE即可求得∠EBC的度數(shù).
(1)∵DE垂直平分AB,
∴EA=EB,
∵AB=AC=10cm,BC=6cm,
∴△BCE的周長=BC+CE+BE=BC+CE+AE=BC+AC=10cm+6cm=16cm.
(2)∵AB=AC,∠A=40°,
∴∠ABC=∠C=70°,
∵EA=EB,∠A=40°,
∴∠A=∠ABE=40°,
∴∠EBC=∠ABC-∠ABE=70°-40°=30°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經過點.
()分別求這兩個函數(shù)的表達式.
()將直線向上平移個單位長度后與軸交于點,與反比例函數(shù)圖象在第四象限內的交點為,連接、,求點的坐標及的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.
(1)求證:PA是⊙O的切線;
(2)若tan∠BAD=,且OC=4,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD與正三角形AEF的頂點A重合,將△AEF繞頂點A旋轉,在旋轉過程中,當BE=DF時,∠BAE的大小可以是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是直角三角形,,點、分別在、上,且.
下列結論:①,②,
③當時,是等邊三角形,
④當時,,
其中正確結論的個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形EFGH的頂點在邊長為3的正方形ABCD邊上,若AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關系式為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中,建立如圖所示的平面真角坐標系,已知格點三角形(三角形的三個頂點都在格點上)
(1)畫出關于直線對稱的;并寫出點、、的坐標.
(2)在直線上找一點,使最小,在圖中描出滿足條件的點(保留作圖痕跡),并寫出點的坐標(提示:直線是過點且垂直于軸的直線)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有 人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為 度;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com