【題目】某校為學生開展拓展性課程,擬在一塊長比寬多6米的長方形場地內建造由兩個大棚組成的植物養(yǎng)殖區(qū)(如圖1),要求兩個大棚之間有間隔4米的路,設計方案如圖2,已知每個大棚的周長為44米.
(1)求每個大棚的長和寬各是多少?
(2)現有兩種大棚造價的方案,方案一是每平方米60元,超過100平方米優(yōu)惠500元,方案二是每平方米70元,超過100平方米優(yōu)惠總價的20%,試問選擇哪種方案更優(yōu)惠?
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點,且AC=CG,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.
(1)求證:CD是⊙O的切線.
(2)若 ,求∠E的度數.
(3)連接AD,在(2)的條件下,若CD= ,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某教學樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,教學樓在建筑物的墻上留下高2m的影子CE;而當光線與地面夾角是45°時,教學樓頂部A在地面上的影子F與墻角C的距離為18m(B、F、C在同一直線上).求教學樓AB的高;(結果保留整數)(參考數據:sim22°≈0.37,cos22°≈0.93,tan22°≈0.40)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖①所示,P是等邊△ABC內的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;
(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉90°得△BCQ,連接PQ.當PA、PB、PC滿足什么條件時,∠PQC=90°?請說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形紙片ABCD中,EF∥AD,M,N是線段EF的六等分點,若把該正方形紙片卷成一個圓柱,使點A與點D重合,此時,底面圓的直徑為10cm,則圓柱上M,N兩點間的距離是cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:一組數據x1,x2,x3,x4,x5的平均數是2,方差是,那么另一組數據3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數和方差分別是( 。
A. 2, B. 2,1 C. 4, D. 4,3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com