【題目】如圖,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,點(diǎn)D在邊AC上且BD平分∠ABC,設(shè)CD=x.
(1)求證:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.
【答案】(1)證明見解析;(2);(3).
【解析】
試題(1)由等腰三角形ABC中,頂角的度數(shù)求出兩底角度數(shù),再由BD為角平分線求出∠DBC的度數(shù),得到∠DBC=∠A,再由∠C為公共角,利用兩對(duì)角相等的三角形相似得到三角形ABC與三角形BCD相似;
(2)根據(jù)(1)結(jié)論得到AD=BD=BC,根據(jù)AD+DC表示出AC,由(1)兩三角形相似得比例求出x的值即可;
(3)過B作BE垂直于AC,交AC于點(diǎn)E,在直角三角形ABE和直角三角形BCE中,利用銳角三角函數(shù)定義求出cos36°與cos72°的值,代入原式計(jì)算即可得到結(jié)果.
試題解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,
∴∠ABC=∠C=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°,
∵∠CBD=∠A=36°,∠C=∠C,
∴△ABC∽△BCD;
(2)∵∠A=∠ABD=36°,
∴AD=BD,
∵BD=BC,
∴AD=BD=CD=1,
設(shè)CD=x,則有AB=AC=x+1,
∵△ABC∽△BCD,
∴,即,
整理得:x2+x-1=0,
解得:x1=,x2=(負(fù)值,舍去),
則x=;
(3)過B作BE⊥AC,交AC于點(diǎn)E,
∵BD=CD,
∴E為CD中點(diǎn),即DE=CE=,
在Rt△ABE中,cosA=cos36°=,
在Rt△BCE中,cosC=cos72°=,
則cos36°-cos72°=-=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=60°,點(diǎn)0是△ABC內(nèi)一點(diǎn),△AB0△ACD,連接OD.
(1)求證△AOD為等邊三角形。
(2)如圖2,連接OC,若∠BOC=130°,∠AOB=.
①求∠OCD的度數(shù)
②當(dāng)△OCD是等腰三角形時(shí),求∠的度數(shù)
、
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測(cè)得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測(cè)得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC=BC=6.點(diǎn)P射線BA上一點(diǎn),點(diǎn)Q是AC的延長線上一點(diǎn),且BP=CQ,連接PQ,與直線BC相交于點(diǎn)D.
(1)如圖①,當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),求CD的長;
(2)如圖②,過點(diǎn)P作直線BC的垂線,垂足為E,當(dāng)點(diǎn)P,Q分別在射線BA和AC的延長線上任意地移動(dòng)過程中,線段BE,DE,CD中是否存在長度保持不變的線段?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,然后解決問題:和、差、倍、分等問題中有著廣泛的應(yīng)用,截長法與補(bǔ)短法在證明線段的和、差、倍、分等問題中有著廣泛的應(yīng)用.具體的做法是在某條線段上截取一條線段等于某特定線段,或?qū)⒛硹l線段延長,使之與某特定線段相等,再利用全等三角形的性質(zhì)等有關(guān)知識(shí)來解決數(shù)學(xué)問題.
(1)如圖1,在△ABC中,若 AB=12,AC=8,求 BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點(diǎn)E使 DE=AD,再連接 BE,把AB、AC、2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線 AD的取值范圍是_______.
問題解決:
(2)如圖2,在四邊形ABCD中,AB=AD,∠ABC+∠ADC=180°,E、F分別是邊BC,CD上的兩點(diǎn),且∠EAF=∠BAD,求證:BE+DF=EF.
問題拓展:
(3)如圖3,在△ABC中,∠ACB=90°,∠CAB=60°,點(diǎn)D是△ABC 外角平分線上一點(diǎn),DE⊥AC交 CA延長線于點(diǎn)E,F(xiàn)是 AC上一點(diǎn),且DF=DB.
求證:AC﹣AE=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林在某商店購買商品A,B共三次,只有其中一次購買時(shí),商品A,B同時(shí)打折,其余兩次均按標(biāo)價(jià)購買,三次購買商品A、B的數(shù)量和費(fèi)用如表所示,
購買商品A的數(shù)量/個(gè) | 購買商品B的數(shù)量/個(gè) | 購買總費(fèi)用/元 | |
第一次購物 | 6 | 5 | 1140 |
第二次購物 | 3 | 7 | 1110 |
第三次購物 | 9 | 8 | 1062 |
(1)在這三次購物中,第 次購物打了折扣;
(2)求出商品A、B的標(biāo)價(jià);
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),AB=5,對(duì)△OAB連續(xù)做旋轉(zhuǎn)變換,依次得到△1,△2,△3,△4,…,則△2017的直角頂點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC邊上的一個(gè)動(dòng)點(diǎn),連接AD,過點(diǎn)C作CE⊥AD于E,連接BE,在點(diǎn)D變化的過程中,線段BE的最小值是__cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com