【題目】如圖,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC邊上的一個動點,連接AD,過點C作CE⊥AD于E,連接BE,在點D變化的過程中,線段BE的最小值是__cm.
【答案】
【解析】如圖,連接B、BC. 在點D移動的過程中,點E在AC為直徑的圓上運動,當、E、B共線時,BE的值最小,最小值為B-E,利用勾股定理求出B即可解決問題.
解:如圖,以AC為直徑作圓,連接B、E.
∵CE⊥AD,
∴∠AEC=90°,
在△ABC中,AB=13cm,AC=12cm,BC=5cm,
AB2=AC2+BC2,
∴△ABC為Rt△,
在Rt△BC中,B=,
∵、E、B、共線時,BE的值最小,最小值為B–E=– 6,
故答案為: – 6.
“點睛”本題考查圓綜合題、勾股定點與圓的位置關系等知識,解題的關鍵是確定點E的運動軌跡,是以AC為直徑的圓上運動,屬于中考填空中壓軸題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,點D在邊AC上且BD平分∠ABC,設CD=x.
(1)求證:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘漁船正以60海里/小時的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時后到達B處,此時測得島礁P在北偏東30°方向,同時測得島礁P正東方向上的避風港M在北偏東60°方向.為了在臺風到來之前用最短時間到達M處,漁船立刻加速以75海里/小時的速度繼續(xù)航行_____小時即可到達.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,
(1)求證:四邊形ADCE為矩形;
(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,∠BOC=60°,頂點C的坐標為(m,),反比例函數(shù)的圖像與菱形對角線AO交于D點,連接BD,當BD⊥x軸時,k的值是( 。
A. B. - C. D. -
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表.
請結合圖表完成下列各題:
(1)① 表中a的值為 ;
② 把頻數(shù)分布直方圖補充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C島在A島的北偏東50°方向,B島在A島的北偏東80°方向,C島在B島的北偏西40°方向,從C島看A、B兩島的視角∠ACB是多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,AB∥CD,∠A=35°,∠C=40°,求∠APC的度數(shù).(提示:作PE∥AB).
(2)如圖2,AB∥DC,當點P在線段BD上運動時,∠BAP=∠α,∠DCP=∠β,求∠CPA與∠α,∠β之間的數(shù)量關系,并說明理由.
(3)在(2)的條件下,如果點P在射線DM上運動,請你直接寫出∠CPA與∠α,∠β之間的數(shù)量關系______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖甲,ABCD是一矩形紙片,AB=3cm,AD=4cm,M是AD上一點,且AM=3cm.操作:
(1)將AB向AM折過去,使AB與AM重合,得折痕AN,如圖乙;
(2)將△ANB以BN為折痕向右折過去,得圖丙.
則HD是( )cm
A. 0.5 B. 1 C. 1.5 D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com