【題目】如圖,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC邊上的一個動點,連接AD,過點C作CE⊥AD于E,連接BE,在點D變化的過程中,線段BE的最小值是__cm.

【答案】

【解析】如圖,連接B、BC. 在點D移動的過程中,點E在AC為直徑的圓上運動,當、E、B共線時,BE的值最小,最小值為B-E,利用勾股定理求出B即可解決問題.

解:如圖,以AC為直徑作圓,連接B、E.

∵CE⊥AD,

∴∠AEC=90°,

在△ABC中,AB=13cm,AC=12cm,BC=5cm,

AB2=AC2+BC2,

∴△ABC為Rt△,

在Rt△BC中,B=

、E、B、共線時,BE的值最小,最小值為BE=– 6,

故答案為: – 6.

“點睛”本題考查圓綜合題、勾股定點與圓的位置關系等知識,解題的關鍵是確定點E的運動軌跡,是以AC為直徑的圓上運動,屬于中考填空中壓軸題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰△ABC中,AB=AC,∠BAC=36°BC=1,點D在邊AC上且BD平分∠ABC,設CD=x

1)求證:△ABC∽△BCD;

2)求x的值;

3)求cos36°-cos72°的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘漁船正以60海里/小時的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時后到達B處,此時測得島礁P在北偏東30°方向,同時測得島礁P正東方向上的避風港M在北偏東60°方向.為了在臺風到來之前用最短時間到達M處,漁船立刻加速以75海里/小時的速度繼續(xù)航行_____小時即可到達.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,ADBC,垂足為點D,AN是△ABC外角∠CAM的平分線,CEAN,垂足為點E,

(1)求證:四邊形ADCE為矩形;

(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點BOx軸的負半軸上,∠BOC=60°,頂點C的坐標為m,),反比例函數(shù)的圖像與菱形對角線AO交于D,連接BD,BDx軸時,k的值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】賞中華詩詞,尋文化基因,品生活之美,某校舉辦了首屆中國詩詞大會,經(jīng)選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表.

請結合圖表完成下列各題:

1 表中a的值為 ;

把頻數(shù)分布直方圖補充完整;

2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C島在A島的北偏東50°方向,B島在A島的北偏東80°方向,C島在B島的北偏西40°方向,從C島看A、B兩島的視角ACB是多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,ABCD,∠A=35°,∠C=40°,求∠APC的度數(shù).(提示:作PEAB).

2)如圖2,ABDC,當點P在線段BD上運動時,∠BAP=∠α,∠DCP=∠β,求∠CPA與∠α,∠β之間的數(shù)量關系,并說明理由.

3)在(2)的條件下,如果點P在射線DM上運動,請你直接寫出∠CPA與∠α,∠β之間的數(shù)量關系______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,ABCD是一矩形紙片,AB=3cm,AD=4cm,MAD上一點,且AM=3cm.操作:

(1)將ABAM折過去,使ABAM重合,得折痕AN,如圖乙;

(2)將ANBBN為折痕向右折過去,得圖丙.

HD是( )cm

A. 0.5 B. 1 C. 1.5 D. 2

查看答案和解析>>

同步練習冊答案