【題目】如圖,拋物線y=﹣ x2+bx+c過點(diǎn)A(4,0),B(﹣4,﹣4).
(1)求拋物線的解析式;
(2)若點(diǎn)P是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),過P作y軸的平行線,分別交拋物線及x軸于C、D兩點(diǎn).請(qǐng)問是否存在這樣的點(diǎn)P,使PD=2CD?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】
(1)解:由題意 ,解得 ,

∴拋物線的解析式為y=﹣ x2+ x+2


(2)解:∵A(4,0),B(﹣4,﹣4),

∴直線AB的解析式為y= x﹣2,

設(shè)P(m, m﹣2),其中﹣4<m<4,則C(m,﹣ m2+ m+2),PD=2﹣ m,CD=|﹣ m2+ m+2|,

① 當(dāng)點(diǎn)C在x軸上方時(shí),CD=﹣ m2+ m+2,由PD=2CD,

得2﹣ m=2(﹣ m2+ m+2),解得m=﹣1或4(舍棄),

∴P(﹣1,﹣ ).

②當(dāng)點(diǎn)C在x軸下方時(shí),CD= m2 m﹣2,由PD=2CD,得2﹣ m=2( m2 m﹣2),解得m=﹣3或4(舍棄),

∴P(﹣3,﹣ ),

綜上所述,點(diǎn)P的坐標(biāo)為(﹣1,﹣ )或(﹣3,﹣


【解析】(1)利用待定系數(shù)法把問題轉(zhuǎn)化為方程組解決.(2)設(shè)P(m, m﹣2),其中﹣4<m<4,則C(m,﹣ m2+ m+2),PD=2﹣ m,CD=|﹣ m2+ m+2|,分兩種情形①當(dāng)點(diǎn)C在x軸上方時(shí),CD=﹣ m2+ m+2,由PD=2CD,得2﹣ m=2(﹣ m2+ m+2),②當(dāng)點(diǎn)C在x軸下方時(shí),CD= m2 m﹣2,由PD=2CD,列出方程即可解決問題.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的圖象,需要了解二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,已知,CD=8,AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC與△ADE中,ABED=AEBC,要使△ABC與△ADE相似,還需要添加一個(gè)條件,這個(gè)條件是(只加一個(gè)即可)并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=3,CD=4,點(diǎn)E在邊CD上,且DE=1.

(1)感知:如圖①,連接AE,過點(diǎn)E作EF⊥AE,交BC于點(diǎn)F,連接AF,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點(diǎn)P在矩形ABCD的邊AD上(點(diǎn)P不與點(diǎn)A、D重合),連接PE,過點(diǎn)E作EF⊥PE,交BC于點(diǎn)F,連接PF.求證:△PDE∽△ECF;
(3)應(yīng)用:如圖③,若EF交AB邊于點(diǎn)F,其他條件不變,且△PEF的面積是3,則AP的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(1, )在反比例函數(shù)y= (x>0)的圖象上,連接OA,將線段OA繞點(diǎn)O沿順時(shí)針方向旋轉(zhuǎn)30°,得到線段OB.

(1)求反比例函數(shù)的解析式;
(2)填空:
①點(diǎn)B的坐標(biāo)是
②判斷點(diǎn)B是否在反比例函數(shù)的圖象上?答;
③設(shè)直線AB的解析式為y=ax+b,則不等式ax+b﹣ <0的解集是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜邊AB上的一點(diǎn)O為圓心所作的半圓分別與AC、BC相切于點(diǎn)D,E,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E為AB邊的中點(diǎn),G,F(xiàn)分別為AD、BC邊上的點(diǎn).若AG=1,BF=2,∠GEF=90°,則GF的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】父親節(jié)快到了,明明準(zhǔn)備為爸爸煮四個(gè)大湯圓作早點(diǎn):一個(gè)芝麻餡,一個(gè)水果餡,兩個(gè)花生餡,四個(gè)湯圓除內(nèi)部餡料不同外,其它一切均相同.
(1)求爸爸吃前兩個(gè)湯圓剛好都是花生餡的概率;
(2)若給爸爸再增加一個(gè)花生餡的湯圓,則爸爸吃前兩個(gè)湯圓都是花生餡的可能性是否會(huì)增大?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正△ABC的邊長(zhǎng)為2,以BC邊上的高AB1為邊作正△AB1C1 , △ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2 , △AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,那么S3= , 則Sn= . (用含n的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案