【題目】在△ABC中,AB=AC,∠BAC=90°,AD是△ABC斜邊BC上的高,EAD上一點(diǎn),連接EC,過(guò)點(diǎn)EEFEC交射線BA于點(diǎn)F.AC、EF交于點(diǎn)G,△ECG與△AFG的面積差為1,則線段AE=___.

【答案】

【解析】

DC上截取BD=ED,連接EM,根據(jù)等腰直角三角形的性質(zhì)得到AD=CD,∠DEM=∠EMD=45°,AE=CM,求得∠EMC=135°,得到∠EAF=∠EMC=135°,證得∠AEF=∠MCE,從而推出△EAF△CME,可得FE=CE.連接FC,設(shè)DM=x,AD=a,通過(guò)勾股定理用DM表示AE、AF、AC、FC的長(zhǎng)度, 再根據(jù)△ECG與△AFG的面積差為1列等式解方程求出DM的長(zhǎng)度,即可求出AE的長(zhǎng)度.

解:如下圖所示:

DC上截取BD=ED,連接EMFC,設(shè)DM=x

∵AD是等腰直角△ABC斜邊BC的高,

∴AD=CD∠ADC=90°,

∠DEM=∠EMD=45°AE=CM,

∴∠EMC=180°∠EMD =180°45°=135°,∠EAF=EAC+FAC=45°+90°=135°,

∴∠EAF=∠EMC=135°

EFEC,

∴∠FEC=90°,∠AEF+DEC=90°,

MEC+DEC=90°,

∴∠AEF=∠MCE,

△EAF△CME中,

∴△EAF△CMEASA),

∴EF=CE,AF=ME

∵設(shè)AD=DC=a,

∴AE= ax,ED=DM=xEF=CE = ,AC=a,AF=ME=FC=

,

,

,

解得:,(不符合題意,舍去),

∴ED=,

∴AE=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F分別在直線AD的兩側(cè),且AE=DF∠A=∠DAB=DC

1)求證:四邊形BFCE是平行四邊形;

2)若AD=10,DC=3,∠EBD=60°,則BE= 時(shí),四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆,售后統(tǒng)計(jì),盆景的平均每盆利潤(rùn)是160元,花卉的平均每盆利潤(rùn)是20元.調(diào)研發(fā)現(xiàn):

①盆景每增加1盆,盆景的平均每盆利潤(rùn)減少2元,每減少1盆,盆景的平均每盆利潤(rùn)增加2元;

②花卉的平均每盆利潤(rùn)始終不變.

小明計(jì)劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加盆,第二期盆景與花卉售完后的利潤(rùn)分別為,(單位:元)

1)用含的代數(shù)式分別表示,.

2)當(dāng)取何值時(shí),第二期培植的盆錄與花卉售完后獲得的總利潤(rùn)最大,最大總利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線ACBD相交于點(diǎn)O,DE∥ACCE∥BD.

1)求證:四邊形OCED為菱形;

2)連接AE、BE,AEBE相等嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中錯(cuò)誤的命題有( )

線段垂直平分線上的點(diǎn)與這條線段兩端點(diǎn)距離相等;
若兩三角形關(guān)于直線L對(duì)稱(chēng),則對(duì)應(yīng)線段所在的直線必相交,且交點(diǎn)在對(duì)稱(chēng)軸上;
頂角和底邊對(duì)應(yīng)相等的兩個(gè)等腰三角形全等;
一腰和一腰上的高對(duì)應(yīng)相等的兩個(gè)等腰三角形全等;
有一邊上的高也是這邊上的中線的等腰三角形是等邊三角形

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:矩形OABC的頂點(diǎn)O在平面直角坐標(biāo)系的原點(diǎn),邊OA、OC分別在x、y軸的正半軸上,且OA=3cm,OC=4cm,點(diǎn)M從點(diǎn)A出發(fā)沿AB向終點(diǎn)B運(yùn)動(dòng),點(diǎn)N從點(diǎn)C出發(fā)沿CA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)M、N同時(shí)出發(fā),且運(yùn)動(dòng)的速度均為1cm/秒,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)即停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)點(diǎn)N運(yùn)動(dòng)1秒時(shí),求點(diǎn)N的坐標(biāo);(提示:過(guò)N作x軸y軸垂線,垂足分別為D,ECN:CA=CE:CO=NE:OA)

(2)試求出多邊形OAMN的面積S與t的函數(shù)關(guān)系式;

(3)t為何值時(shí),以△OAN的一邊所在直線為對(duì)稱(chēng)軸翻折△OAN,翻折前后的兩個(gè)三角形所組成的四邊形為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為評(píng)估九年級(jí)學(xué)生的學(xué)習(xí)成績(jī)狀況,以應(yīng)對(duì)即將到來(lái)的中考做好教學(xué)調(diào)整,某中學(xué)抽取了部分參加考試的學(xué)生的成績(jī)作為樣本分析,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題:
1)求本中學(xué)成績(jī)類(lèi)別為“中”的人數(shù);
2)求出扇形圖中,“優(yōu)”所占的百分比,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
3)該校九年級(jí)共有1000人參加了這次考試,請(qǐng)估算該校九年級(jí)共有多少名學(xué)生的數(shù)學(xué)成績(jī)達(dá)到優(yōu)秀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m210有兩個(gè)不相等的實(shí)數(shù)根.

①求m的取值范圍;

②設(shè)x1,x2是方程的兩根且x12+x22+x1x2170,m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線yx23x+cy軸的交點(diǎn)為(0,2),則下列說(shuō)法正確的是( 。

A. 拋物線開(kāi)口向下

B. 拋物線與x軸的交點(diǎn)為(﹣10),(30

C. 當(dāng)x1時(shí),y有最大值為0

D. 拋物線的對(duì)稱(chēng)軸是直線x

查看答案和解析>>

同步練習(xí)冊(cè)答案