【題目】如圖,在直角坐標系中,矩形OABC的邊OAx軸上,OCy軸上,且B的坐標為(86),動點DB點出發(fā),以1個單位長度每秒的速度向C點運動t秒(D不與B,C重合),連接AD,將△ABD沿AD翻折至△AB'DB'在矩形的內(nèi)部或邊上),連接DB'DB'所在直線與AC交于點F,與OA所在直線交于點E

1)①當t 秒,B'F重合;

②求線段CB'的取值范圍;

2)①求EB'的長度(用含t的代數(shù)式表示),并求出t的取值范圍;

②當t為何值時,△AEF是以AE為底的等腰三角形?并求出此時EC的長度.

【答案】(1)①3;②4CB'<8;(2)①EB' (0<t6);②當t2時,△AEF是以AE為底的等腰三角形,CE2

【解析】

(1)①直接利用題意填寫即可;②由題意得,AB=6,然后以點B'的運動軌跡確定CB'的取值范圍.(2)①設AEDEx,過點DDMx軸于點M,再應用勾股定理結(jié)合題意即可解答;②若△AEF是以AE為底的等腰三角形,則AEFEAF,利用全等三角形的相關知識解答即可.

解:(1)①t 3

②由題意知,ABAB'6

所以點B'的運動軌跡為以A為圓心以6為半徑的圓

CB'的取值范圍是 4CB'<8

2)①如圖:過點DDMx軸于點M,易證AEDE AEDEx

Rt△DME DM2ME2DE2

∴ (xt)262x2

解得x.即DE

EB't

=- (0<t6

②若△AEF是以AE為底的等腰三角形,則AEFEAF

易證AOCEMD

ACDE

10 解得t12t218(舍去)

t2時,△AEF是以AE為底的等腰三角形

此時MEOA10,OE2, CE2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在等邊△ABC中,點D是邊AC上一點,連接BD,將△BCD繞著點B逆時針旋轉(zhuǎn)60,得到△BAE,連接ED,則下列結(jié)論中:①AE∥BC;②∠DEB=60;③∠ADE=∠BDC,其中正確結(jié)論的序號是(

A.①②B.①③C.②③D.只有①

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E是AD邊的中點,BD,CE交于點H,BE、AH交于點G,則下列結(jié)論:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正確的是( 。

A.①③B.①②③④C.①②③D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在甲乙兩個不透明的口袋中,分別有大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上分別標有數(shù)字12,3,4,乙口袋中的小球上分別標有數(shù)字2,34,先從甲袋中任意摸出一個小球,記下數(shù)字為m,再從乙袋中摸出一個小球,記下數(shù)字為n

1)請用列表或畫樹狀圖的方法表示出所有(m,n)可能的結(jié)果;

2)若m,n都是方程x25x+60的解時,則小明獲勝;若m,n都不是方程x25x+60的解時,則小利獲勝,問他們兩人誰獲勝的概率大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,MEAM,MEAD的延長線于點E

1)求證:△ABM ∽△EMA

2)若AB2,BM1,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車租賃公司共有汽車50輛,市場調(diào)查表明,當租金為每輛每日200元時可全部租出,當租金每提高10元,租出去的車就減少2輛.

1)當租金提高多少元時,公司的每日收益可達到10120元?

2)公司領導希望日收益達到10200元,你認為能否實現(xiàn)?若能,求出此時的租金,若不能,請說明理由.

3)汽車日常維護要一定費用,已知外租車輛每日維護費為100元,未租出的車輛維護費為50元,當租金為多少元時,公司的利潤恰好為5500元?(利潤=收益一維護費).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:PCD是等腰直角三角形,∠DPC=90°,∠APB=135°

求證:(1)△PAC∽△BPD;

(2)若AC=3,BD=1,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=-x2+mx+nx軸交于點A,BAB的左側(cè)).

1)拋物線的對稱軸為直線x=-3,AB=4.求拋物線的表達式;

2)平移(1)中的拋物線,使平移后的拋物線經(jīng)過點O,且與x正半軸交于點C,記平移后的拋物線頂點為P,若OCP是等腰直角三角形,求點P的坐標;

3)當m=4時,拋物線上有兩點Mx1,y1)和Nx2,y2),若x12,x22,x1+x24,試判斷y1y2的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊OAOC分別在x軸和y軸上,并且OA5OC3.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為_____

查看答案和解析>>

同步練習冊答案