【題目】如圖∠BAC=30°,D 為角平分線上一點(diǎn),DE⊥AC 于 E,DF∥AC且交AB于F.
(1)求證:△ADF 是等腰三角形.
(2)若 DF=10cm,求 DE的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)5cm.
【解析】
(1)根據(jù)角平分線的定義、平行線的性質(zhì)、等腰三角形的判定定理證明;
(2)作DH⊥AB于H,根據(jù)直角三角形的性質(zhì)求出BH,根據(jù)角平分線的性質(zhì)定理解答.
(1)證明:∵∠BAC=30°,D為角平分線上一點(diǎn),
∴∠BAD=∠CAD,
∵DF∥AC,
∴∠CAD=∠FDA,
∴∠BAD=∠FDA,
∴FA=FD,即△ADF是等腰三角形;
(2)解:作DH⊥AB于H,
∵DF∥AC,
∴∠BFD=∠BAC=30°,
∴DH=DF=5,
∵D為角平分線上一點(diǎn),DE⊥AC,DH⊥AB,
∴DE=DH=5cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)內(nèi)角分別是它們對(duì)角的一半的四邊形叫做半對(duì)角四邊形.
(1)如圖1,在半對(duì)角四邊形ABCD中,∠B= ∠D,∠C= ∠A,求∠B與∠C的度數(shù)之和;
(2)如圖2,銳角△ABC內(nèi)接于⊙O,若邊AB上存在一點(diǎn)D,使得BD=BO.∠OBA的平分線交OA于點(diǎn)E,連結(jié)DE并延長(zhǎng)交AC于點(diǎn)F,∠AFE=2∠EAF.
求證:四邊形DBCF是半對(duì)角四邊形;
(3)如圖3,在(2)的條件下,過(guò)點(diǎn)D作DG⊥OB于點(diǎn)H,交BC于點(diǎn)G.當(dāng)DH=BG時(shí),求△BGH與△ABC的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 A,B,C 三點(diǎn)都在直線l 上,AC 與 BC 的長(zhǎng)度之比為 2:3,D 是 AB 的中點(diǎn).若 AC4cm,則 CD 的長(zhǎng)為 ________________ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全球氣候變暖導(dǎo)致-些冰川融化并消失,在冰川|消失12年后,一種低等植物苔蘚,就開(kāi)始在巖石上生長(zhǎng),每一個(gè)苔蘚都會(huì)長(zhǎng)成近似的圓形,苔蘚的直徑和其生長(zhǎng)年限近似地滿(mǎn)足如下的關(guān)系式:d=7 (t≥12),其中d表示苔蘚的直徑,單位是厘米,t代表冰川消失的時(shí)間(單位:年)。
(1)計(jì)算冰川消失16年后苔蘚的直徑為多少厘米?
(2)如果測(cè)得一些苔蘚的直徑是35厘米,問(wèn)冰川約是在多少年前消失的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的端點(diǎn)在格點(diǎn)上,按要求畫(huà)出格點(diǎn)三角形,并求其面積.
(1)在圖①中畫(huà)出一個(gè)以 AB為腰的等腰三角形 ABC,其面積為____________.
(2) 在圖②中畫(huà)出一個(gè)以AB為底的等腰三角形ABC,其面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在圖中作出△ABC 關(guān)于 y 軸對(duì)稱(chēng)的△A1B1C1.
(2)△A1B1C1 的面積為___________.
(3)在 x 軸上找出一點(diǎn)P,使PA+PB的值最小直接畫(huà)出點(diǎn)P的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.
(1)求證:△ABQ≌△CAP;
(2)當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,求出它的度數(shù).
(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,直接寫(xiě)出它的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖象在第一象限交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,2),連接OA、OB,過(guò)B作BD⊥y軸,垂足為D,交OA于C,若OC=CA.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是∠AOB的邊OB上的一點(diǎn),過(guò)點(diǎn)P畫(huà)OB的垂線,交OA于點(diǎn)C.
(1)過(guò)點(diǎn)P畫(huà)OA的垂線,垂足為H;
(2)線段PH的長(zhǎng)度是點(diǎn)P到____的距離,____是點(diǎn)C到直線OB的距離.線段PC,PH,OC這三條線段大小關(guān)系是___.(用“<”號(hào)連接)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com