【題目】有兩個(gè)內(nèi)角分別是它們對(duì)角的一半的四邊形叫做半對(duì)角四邊形.
(1)如圖1,在半對(duì)角四邊形ABCD中,∠B= ∠D,∠C= ∠A,求∠B與∠C的度數(shù)之和;

(2)如圖2,銳角△ABC內(nèi)接于⊙O,若邊AB上存在一點(diǎn)D,使得BD=BO.∠OBA的平分線交OA于點(diǎn)E,連結(jié)DE并延長(zhǎng)交AC于點(diǎn)F,∠AFE=2∠EAF.

求證:四邊形DBCF是半對(duì)角四邊形;
(3)如圖3,在(2)的條件下,過(guò)點(diǎn)D作DG⊥OB于點(diǎn)H,交BC于點(diǎn)G.當(dāng)DH=BG時(shí),求△BGH與△ABC的面積之比.

【答案】
(1)

解:在半對(duì)角四邊形ABCD中,∠B=∠D,∠C=∠A.

∵∠A+∠B+∠C+∠D=360°,

∴3∠B+3∠C=360°.

∴∠B+∠C=120°.

即∠B與∠C的度數(shù)之和120°.


(2)

證明:在△BED和△BEO中,

.

∴△BED≌△BEO(SAS).

∴∠BDE=∠BOE.

又∵∠BCF=∠BOE.

∴∠BCF=∠BDE.

如下圖,連結(jié)OC.

設(shè)∠EAF=.則∠AFE=2∠EAF=2.

∴∠EFC=180°-∠AFE=180°-2.

∵OA=OC,

∴∠OAC=∠OCA=.

∴∠AOC=180°-∠OAC-∠OCA=180°-2.

∴∠ABC=∠AOC=∠EFC.

∴四邊形DBCF是半對(duì)角四邊形.


(3)

解:如下圖,作過(guò)點(diǎn)OM⊥BC于點(diǎn)M.

∵四邊形DBCF是半對(duì)角四邊形,

∴∠ABC+∠ACB=120°.

∴∠BAC=60°.

∴∠BOC=2∠BAC=120°.

∵OB=OC

∴∠OBC=∠OCB=30°.

∴BC=2BM=BO=BD.

∵DG⊥OB,

∴∠HGB=∠BAC=60°.

∵∠DBG=∠CBA,

∴△DBG△CBA.

=2=.

∵DH=BG,BG=2HG.

∴DG=3HG.

=

=.


【解析】(1)在半對(duì)角四邊形ABCD中,∠B=∠D,∠C=∠A;根據(jù)四邊形的內(nèi)角和為360°,得出∠B與∠C的度數(shù)之和.
(2)如圖連接OC,根據(jù)條件先證△BED≌△BEO,再根據(jù)全等三角形的性質(zhì)得出∠BCF=∠BOE=∠BDE;設(shè)∠EAF=.則∠AFE=2∠EAF=2得出∠EFC=180°-∠AFE=180°-2;再根據(jù)OA=OC得出∠OAC=∠OCA= , 根據(jù)三角形內(nèi)角和得出∠AOC=180°-∠OAC-∠OCA=180°-2;從而得證.
(3)如下圖,作過(guò)點(diǎn)OM⊥BC于點(diǎn)M,由四邊形DBCF是半對(duì)角四邊形,得出∠ABC+∠ACB=120°,∠BAC=60°.∠BOC=2∠BAC=120°;再由OB=OC,得出∠OBC=∠OCB=30°.BC=2BM=BO=BD;根據(jù)△DBG~△CBA得出答案.
【考點(diǎn)精析】掌握三角形的內(nèi)角和外角和等腰三角形的性質(zhì)是解答本題的根本,需要知道三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:

(1)如果∠1=∠B,那么______________,根據(jù)是__________________________;

(2)如果∠3=∠D,那么______________,根據(jù)是__________________________;

(3)如果要使BE∥DF,必須∠1=∠_______,根據(jù)是_________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果種植場(chǎng)今年收獲的妃子笑無(wú)核號(hào)兩種荔枝共3200 千克,全部售出后賣(mài)了30400 元.已知妃子笑荔枝每千克售價(jià)8 元,無(wú)核號(hào)荔枝每千克售價(jià)12 元,問(wèn)該種植場(chǎng)今年這兩種荔枝各收獲多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正比例函數(shù) 的圖象與反比例函數(shù) 的圖象交于A、B兩點(diǎn),點(diǎn)C在x軸負(fù)半軸上,AC=AO,△ACO的面積為12.

(1)求k的值;
(2)根據(jù)圖象,當(dāng) 時(shí),寫(xiě)出自變量 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)南充市創(chuàng)建全國(guó)衛(wèi)生城市的號(hào)召,某校1 500名學(xué)生參加了衛(wèi)生知識(shí)競(jìng)賽,成績(jī)記為A、B、C、D四等。從中隨機(jī)抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,根據(jù)圖表信息,以下說(shuō)法不正確的是( )

A.樣本容量是200

B.D等所在扇形的圓心角為15°

C.樣本中C等所占百分比是10%

D.估計(jì)全校學(xué)生成績(jī)?yōu)锳等大約有900人

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某長(zhǎng)途汽車客運(yùn)公司規(guī)定旅客可免費(fèi)攜帶一定質(zhì)量的行李,當(dāng)行李的質(zhì)量超過(guò)規(guī)定時(shí),需付的行李費(fèi) (元)是行李質(zhì)量 )的一次函數(shù).已知行李質(zhì)量為 時(shí)需付行李費(fèi) 元,行李質(zhì)量為 時(shí)需付行李費(fèi) 元.
(1)當(dāng)行李的質(zhì)量 超過(guò)規(guī)定時(shí),求 之間的函數(shù)表達(dá)式;
(2)求旅客最多可免費(fèi)攜帶行李的質(zhì)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列不等式或不等式組,并把它們的解集在數(shù)軸上表示出來(lái)

(1)5x15>4x13;             (2) ;

(3) (4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為直線AB上一點(diǎn),AOC50°,OD平分AOC,DOE90°

(1)BOC的度數(shù);

(2)通過(guò)計(jì)算判斷OE是否平分BOC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖∠BAC=30°,D 為角平分線上一點(diǎn),DEAC E,DFAC且交ABF.

(1)求證:ADF 是等腰三角形.

(2) DF=10cm,求 DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案