【題目】如圖所示為20137月份的日歷示意圖.

(1)請(qǐng)你計(jì)算虛線方框圈出的2×2個(gè)數(shù)(22列的4個(gè)數(shù))的和;

(2)若方框圈出的2×2個(gè)數(shù)從左下角到右上角的2個(gè)數(shù)之和為46,則這4個(gè)數(shù)的最后一天是7   日.(直接填空)

(3)若方框圈出的2×2個(gè)數(shù)的和最大,請(qǐng)你用方框?qū)⑦@4個(gè)數(shù)圈出來,并計(jì)算這4個(gè)數(shù)的和.

【答案】(1)48;(2)27;(3)圖見解析;和為108.

【解析】

(1)根據(jù)有理數(shù)的加法法則計(jì)算即可求解;

(2)可設(shè)這4個(gè)數(shù)的最后一天是7x日,根據(jù)等量關(guān)系:方框圈出的2×2個(gè)數(shù)從左下角到右上角的2個(gè)數(shù)之和為46,列出方程求解即可;

(3)根據(jù)有理數(shù)的加法法則計(jì)算即可求解.

解:(18+9+15+16=48

答:虛線方框圈出的2×2個(gè)數(shù)(22列的4個(gè)數(shù))的和是48

2)設(shè)這4個(gè)數(shù)的最后一天是7x日,依題意有

x+x8=46

解得x=27

故這4個(gè)數(shù)的最后一天是727日;

3)如圖所示:

23+24+30+31=108

答:這4個(gè)數(shù)的和是108

故答案為:27

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在現(xiàn)實(shí)生活中,我們會(huì)看到許多“標(biāo)準(zhǔn)”的矩形,如我們的課本封面、A4的打印紙等,其實(shí)這些矩形的長與寬之比都為 :1,我們不妨就把這樣的矩形稱為“標(biāo)準(zhǔn)矩形”,在“標(biāo)準(zhǔn)矩形”ABCD中,P為DC邊上一定點(diǎn),且CP=BC,如圖所示.
(1)如圖①,求證:BA=BP;

(2)如圖②,點(diǎn)Q在DC上,且DQ=CP,若G為BC邊上一動(dòng)點(diǎn),當(dāng)△AGQ的周長最小時(shí),求 的值;

(3)如圖③,已知AD=1,在(2)的條件下,連接AG并延長交DC的延長線于點(diǎn)F,連接BF,T為BF的中點(diǎn),M、N分別為線段PF與AB上的動(dòng)點(diǎn),且始終保持PM=BN,請(qǐng)證明:△MNT的面積S為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),AC=8cm,CB=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).

(1)求線段MN的長;

(2)若AC+BC=acm,其他條件不變,直接寫出線段MN的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點(diǎn),連接AE、CF

(1)填空∠B=_______°;

(2)求證:四邊形AECF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中有四點(diǎn)A(﹣2,0),B(﹣1,0),C(0,1),D(0,2)在A、B、C、D中取兩點(diǎn)與點(diǎn)O為頂點(diǎn)作三角形,所作三角形是等腰直角三角形的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBCB=90°,AB=8 cm,AD=24 cm,BC=26 cm.點(diǎn)PA出發(fā),以1 cm/s的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C同時(shí)出發(fā),以3 cm/s的速度向點(diǎn)B運(yùn)動(dòng),規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).從運(yùn)動(dòng)開始,使PQCD需要__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線yx交于點(diǎn)E,點(diǎn)E的橫坐標(biāo)為3

(1) 求點(diǎn)A的坐標(biāo)

(2) x軸上有一點(diǎn)Pm,0),過點(diǎn)Px軸的垂線,與直線交于點(diǎn)C,與直線yx 交于點(diǎn)D.若CD≥4,則m的取值范圍為___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+6分別與x軸、y軸交于點(diǎn)E,F(xiàn),已知點(diǎn)E的坐標(biāo)為(-8,0),點(diǎn)A的坐標(biāo)為(-6,0).

(1)求k的值;

(2)若點(diǎn)P(x,y)是該直線上的一個(gè)動(dòng)點(diǎn),探究:當(dāng)OPA的面積為27時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,線段ABBC于點(diǎn)B,CDBC于點(diǎn)C,點(diǎn)E在線段BC上,且AEDE.

(1)求證:∠EAB=CED;

(2)如圖2,AF、DF分別平分∠BAE和∠CDE,EH平分∠DECCD于點(diǎn)H,EH的反向延長線交AF于點(diǎn)G.

①求證EGAF;

②求∠F的度數(shù).(提示:三角形內(nèi)角和等于180度)

查看答案和解析>>

同步練習(xí)冊(cè)答案