【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),AC=8cm,CB=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).

(1)求線段MN的長(zhǎng);

(2)若AC+BC=acm,其他條件不變,直接寫(xiě)出線段MN的長(zhǎng)為   

【答案】(1)7cm;(2)a cm.

【解析】

1)根據(jù)線段中點(diǎn)的性質(zhì),可得CM、CN的長(zhǎng),根據(jù)線段的和差,可得答案

2)根據(jù)線段中點(diǎn)的性質(zhì),可得CMCN的長(zhǎng),根據(jù)線段的和差,可得答案

1∵點(diǎn)M,N分別是AC,BC的中點(diǎn),AC=8,CB=6CM=AC=×8=4,CN=BC=×6=3MN=CM+CN=4+3=7cm;

2∵點(diǎn)MN分別是AC,BC的中點(diǎn),CM=AC,CN=BC,MN=CM+CN=AC+BC=AC+BC)=AB=acm).

故答案為:a cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從共享單車(chē),共享汽車(chē)等共享出行到共享雨傘等共享物品,各式各樣的共享

經(jīng)濟(jì)模式在各個(gè)領(lǐng)域迅速的普及。

(1) 為獲得泰州市市民參與共享經(jīng)濟(jì)的活動(dòng)信息,下列調(diào)查方式中比較合理的是   ;

A.對(duì)某學(xué)校的全體同學(xué)進(jìn)行問(wèn)卷調(diào)查 B.對(duì)某小區(qū)的住戶(hù)進(jìn)行問(wèn)卷調(diào)查

C.在全市里的不同區(qū)縣,選取部分市民進(jìn)行問(wèn)卷調(diào)查

(2) 調(diào)查小組隨機(jī)調(diào)查了泰興市市民騎共享單車(chē)情況,某社區(qū)年齡在12~36歲的人有1000人,從中隨機(jī)抽取了100人,統(tǒng)計(jì)了他們騎共享單車(chē)的人數(shù),并繪制了如下不完整的統(tǒng)計(jì)圖表.

根據(jù)以上信息解答下列問(wèn)題:

求出統(tǒng)計(jì)表中的a、b,并補(bǔ)全頻數(shù)分布直方圖

試估計(jì)這個(gè)社區(qū)年齡在20歲到32(20歲,不含32)騎共享單車(chē)的人有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程﹣1的步驟如下:

(解析)第一步:﹣1(分?jǐn)?shù)的基本性質(zhì))

第二步:2x﹣1=3(2x+8)﹣3……(①)

第三步:2x﹣1=6x+24﹣3……(②)

第四步:2x﹣6x=24﹣3+1……(③)

第五步:﹣4x=22(④)

第六步:x=﹣……(⑤)

以上解方程第二步到第六步的計(jì)算依據(jù)有:去括號(hào)法則.等式性質(zhì)一.③等式性質(zhì)二.合并同類(lèi)項(xiàng)法則.請(qǐng)選擇排序完全正確的一個(gè)選項(xiàng)(  )

A. ②①③④② B. ②①③④③ C. ③①②④③ D. ③①④②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系xOy中,A(0,5),直線x=﹣5與x軸交于點(diǎn)D,直線y=﹣ x﹣ 與x軸及直線x=﹣5分別交于點(diǎn)C,E,點(diǎn)B,E關(guān)于x軸對(duì)稱(chēng),連接AB.

(1)求點(diǎn)C,E的坐標(biāo)及直線AB的解析式;
(2)設(shè)面積的和S=S△CDE+S四邊形ABDO , 求S的值;
(3)在求(2)中S時(shí),嘉琪有個(gè)想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積不更快捷嗎?”但大家經(jīng)反復(fù)演算,發(fā)現(xiàn)S△AOC≠S,請(qǐng)通過(guò)計(jì)算解釋他的想法錯(cuò)在哪里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作:如圖,直線AB與CD交于點(diǎn)O,按要求完成下列問(wèn)題.

(1)用量角器量得∠AOC=   度.AB與CD的關(guān)系可記作   

(2)畫(huà)出∠BOC的角平分線OM,∠BOM=∠   =   度.

(3)在射線OM上取一點(diǎn)P,畫(huà)出點(diǎn)P到直線AB的距離PE.

(4)如圖若按“上北下南左西右東”的方位標(biāo)記,請(qǐng)畫(huà)出表示“南偏西30°”的射線OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解

如圖1,已知點(diǎn)A是BC外一點(diǎn),連接AB,AC,求∠BAC+∠B+∠C的度數(shù).

(1)閱讀并補(bǔ)充下面推理過(guò)程

解:過(guò)點(diǎn)A作ED∥BC

∴∠B=∠   ,∠C=∠   

又∵∠EAB+∠BAC+∠DAC=180°(平角定義)

∴∠B+∠BAC+∠C=180°

從上面的推理過(guò)程中,我們發(fā)現(xiàn)平行線具有“等角轉(zhuǎn)化”的功能,將∠BAC,∠B,∠C“湊”在一起,得出角之間的關(guān)系,使問(wèn)題得以解決

(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù).

小明受到啟發(fā),過(guò)點(diǎn)C作CF∥AB如圖所示,請(qǐng)你幫助小明完成解答:

(3)已知AB∥CD,點(diǎn)C在點(diǎn)D的右側(cè),∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直線交于點(diǎn)E,點(diǎn)E在AB與CD兩條平行線之間.

①如圖3,點(diǎn)B在點(diǎn)A的左側(cè),若∠ABC=60°,則∠BED的度數(shù)為   °.

②如圖4,點(diǎn)B在點(diǎn)A的右側(cè),且AB<CD,AD<BC.若∠ABC=n°,則∠BED的度數(shù)為   °(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某新建成學(xué)校舉行美化綠化校園活動(dòng),九年級(jí)計(jì)劃購(gòu)買(mǎi)A,B兩種花木共100棵綠化操場(chǎng),其中A花木每棵50元,B花木每棵100元.
(1)若購(gòu)進(jìn)A,B兩種花木剛好用去8000元,則購(gòu)買(mǎi)了A,B兩種花木各多少棵?
(2)如果購(gòu)買(mǎi)B花木的數(shù)量不少于A花木的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買(mǎi)方案使所需總費(fèi)用最低,并求出該購(gòu)買(mǎi)方案所需總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示為20137月份的日歷示意圖.

(1)請(qǐng)你計(jì)算虛線方框圈出的2×2個(gè)數(shù)(22列的4個(gè)數(shù))的和;

(2)若方框圈出的2×2個(gè)數(shù)從左下角到右上角的2個(gè)數(shù)之和為46,則這4個(gè)數(shù)的最后一天是7   日.(直接填空)

(3)若方框圈出的2×2個(gè)數(shù)的和最大,請(qǐng)你用方框?qū)⑦@4個(gè)數(shù)圈出來(lái),并計(jì)算這4個(gè)數(shù)的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖所示,折疊矩形的一邊,使點(diǎn)落在邊的點(diǎn)處,如果.

(1)求FC的長(zhǎng);(2)求EC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案