【題目】點P是菱形ABCD的對角線AC上的一個動點,已知AB=1,∠ADC=120°, 點M,N分別是AB,BC邊上的中點,則△MPN的周長最小值是______.
【答案】.
【解析】
先作點M關(guān)于AC的對稱點M′,連接M′N交AC于P,此時MP+NP有最小值.然后證明四邊形ABNM′為平行四邊形,即可求出MP+NP=M′N=AB=1,再求出MN的長即可求出答案.
如圖,作點M關(guān)于AC的對稱點M′,連接M′N交AC于P,此時MP+NP有最小值,最小值為M′N的長.
∵菱形ABCD關(guān)于AC對稱,M是AB邊上的中點,
∴M′是AD的中點,
又∵N是BC邊上的中點,
∴AM′∥BN,AM′=BN,
∴四邊形ABNM′是平行四邊形,
∴M′N=AB=1,
∴MP+NP=M′N=1,即MP+NP的最小值為1,
連結(jié)MN,過點B作BE⊥MN,垂足為點E,
∴ME=MN,
在Rt△MBE中,,BM=
∴ME=,
∴MN=
∴△MPN的周長最小值是+1.
故答案為:+1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(0,5),直線x=-5與x軸交于點D,直線y=-x-與x軸及直線x=-5分別交于點C,E.點B,E關(guān)于x軸對稱,連接AB.
(1)求點C,E的坐標及直線AB的解析式;
(2)若S=S△CDE+S四邊形ABDO,求S的值;
(3)在求(2)中S時,嘉琪有個想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積,如此不更快捷嗎?”但大家經(jīng)反復(fù)驗算,發(fā)現(xiàn)S△AOC≠S,請通過計算解釋他的想法錯在哪里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的袋子中有四張標著數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲.
小明畫出樹狀圖如圖所示:
小華列出表格如下:
回答下列問題:
(1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是,隨機抽出一張卡片后 (填“放回”或“不放回”),再隨機抽出一張卡片;
(2)根據(jù)小華的游戲規(guī)則,表格中①表示的有序數(shù)對為 ;
(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認為誰獲勝的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2…、正方形AnBnnCn﹣1按如圖方式放置,點A1、A2、A3、…在直線y=x+1上,點C1、C2、C3、…在x軸上.已知A1點的坐標是(0,1),則點B3的坐標為_____,點Bn的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是直線CD上的點,OA平分∠BOC,OE平分∠BOD,∠AOC=35°,
(1) 求∠BOE的度數(shù),
(2)求∠COE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機調(diào)查了20名學(xué)生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下:
閱讀時間 (小時) | 2 | 2.5 | 3 | 3.5 | 4 |
學(xué)生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學(xué)生閱讀小時數(shù)的說法正確的是( 。
A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲和乙同時從學(xué)校放學(xué),兩人以各自送度勻速步行回家,甲的家在學(xué)校的正西方向,乙的家在學(xué)校的正東方向,乙家離學(xué)校的距離比甲家離學(xué)校的距離遠3900米,甲準備一回家就開始做什業(yè),打開書包時發(fā)現(xiàn)錯拿了乙的練習(xí)冊.于是立即步去追乙,終于在途中追上了乙并交還了練習(xí)冊,然后再以先前的速度步行回家,(甲在家中耽擱和交還作業(yè)的時間忽略不計)結(jié)果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學(xué)校出發(fā)的時間x分鐘的函數(shù)關(guān)系圖,則甲的家和乙的家相距_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,﹣1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側(cè)),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)當△ADP是直角三角形時,求點P的坐標;
(3)在題(2)的結(jié)論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O直徑,D為⊙O上一點,AT 平分∠BAD交⊙O于點 T,過 T 作AD的垂線交 A D的延長線于點 C。
(1)求證:CT為⊙O的切線;
(2)若⊙O半徑為2,CT=,求AD的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com