【題目】如圖,在平面直角坐標系xOy中,A(0,5),直線x=-5與x軸交于點D,直線y=-x-與x軸及直線x=-5分別交于點C,E.點B,E關于x軸對稱,連接AB.
(1)求點C,E的坐標及直線AB的解析式;
(2)若S=S△CDE+S四邊形ABDO,求S的值;
(3)在求(2)中S時,嘉琪有個想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉化為直接求△AOC的面積,如此不更快捷嗎?”但大家經反復驗算,發(fā)現S△AOC≠S,請通過計算解釋他的想法錯在哪里.
【答案】(1)C(-13,0),E(-5,-3),;(2)32;(3)見解析.
【解析】
(1)利用坐標軸上點的特點確定出點C的坐標,再利用直線的交點坐標的確定方法求出點E坐標,進而得到點B坐標,最后用待定系數法求出直線AB解析式;
(2)直接利用直角三角形的面積計算方法和直角梯形的面積的計算即可得出結論,
(3)先求出直線AB與x軸的交點坐標,判斷出點C不在直線AB上,即可.
(1)在直線中,令y=0,則有0=,
∴x=﹣13,
∴C(﹣13,0),
令x=﹣5,代入,解得y=﹣3,
∴E(﹣5,﹣3),
∵點B,E關于x軸對稱,
∴B(﹣5,3),
∵A(0,5),
∴設直線AB的解析式為y=kx+5,
∴﹣5k+5=3,
∴k=,
∴直線AB的解析式為;
(2)由(1)知E(﹣5,﹣3),
∴DE=3,
∵C(﹣13,0),
∴CD=﹣5﹣(﹣13)=8,
∴S△CDE=CD×DE=12,
由題意知,OA=5,OD=5,BD=3,
∴S四邊形ABDO=(BD+OA)×OD=20,
∴S=S△CDE+S四邊形ABDO=12+20=32;
(3)由(2)知,S=32,
在△AOC中,OA=5,OC=13,
∴S△AOC=OA×OC==32.5,
∴S≠S△AOC,
理由:由(1)知,直線AB的解析式為,令y=0,則0=,
∴x=﹣≠﹣13,
∴點C不在直線AB上,
即:點A,B,C不在同一條直線上,
∴S△AOC≠S.
科目:初中數學 來源: 題型:
【題目】如圖,點E在正方形ABCD的邊AB上,連接DE,過點C作CF⊥DE于F,過點A作AG∥CF交DE于點G.
(1)求證:△DCF≌△ADG.
(2)若點E是AB的中點,設∠DCF=α,求sinα的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,如果 A1、A2、A3、A4 把圓周四等分,則以A1、A2、A3、A4為頂點的直角三角形4個;如圖②,如果A1、A2、A3、A4、A5、A6 把圓周六等分,則以A1、A2、A3、A4、A5、A6 為點的直角三角形有 12 個;如果 A1、A2、A3、……A2n 把圓周 2n 等分,則以 A1、A2、A3、…A2n為頂點的直角三角形有__________個,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學開展了“手機伴我健康行”主題活動.他們隨機抽取部分學生進行“手機使用目的”和“每周使用手機時間”的問卷調查,并繪制成如圖①②的統計圖。已知“查資料”人人數是40人。
請你根據以上信息解答以下問題
(1)在扇形統計圖中,“玩游戲”對應的圓心角度數是_______________。
(2)補全條形統計圖
(3)該校共有學生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】.某酒廠生產A,B兩種品牌的酒,平均每天兩種酒共可售出600瓶,每種酒每瓶的成本和售價如表所示,設平均每天共獲利y元,平均每天售出A種品牌的酒x瓶.
A | B | |
成本(元) | 50 | 35 |
售價(元) | 70 | 50 |
(1)請寫出y關于x的函數關系式;
(2)如果該廠每天至少投入成本25000元,且售出的B種品牌的酒不少于全天銷售總量的55%,那么共有幾種銷售方案?并求出每天至少獲利多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現金、D其他,該小組對某超市一天內購買者的支付方式進行調查統計,得到如下兩幅不完整的統計圖.
請你根據統計圖提供的信息,解答下列問題:
(1)本次一共調查了多少名購買者?
(2)請補全條形統計圖;在扇形統計圖中A種支付方式所對應的圓心角為 度.
(3)若該超市這一周內有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設長方形地面,請觀察下列圖形,并解答有關問題:
(1)在第n個圖中,第一橫行共 塊瓷磚,第一豎列共有 塊瓷磚;(均用含n的代數式表示)鋪設地面所用瓷磚的總塊數為 (用含n的代數式表示,n表示第n個圖形)
(2)上述鋪設方案,鋪一塊這樣的長方形地面共用了506塊瓷磚,求此時n的值;
(3)黑瓷磚每塊4元,白瓷磚每塊3元,在問題(2)中,共需要花多少錢購買瓷磚?
(4)是否存在黑瓷磚與白瓷磚塊數相等的情形?請通過計算加以說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角三角形OA1A2的直角邊OA1在y軸的正半軸上,且OA1=A1A2=1,以OA2為直角邊作第二個等腰直角三角形OA2A3,以OA3為直角邊作第三個等腰直角三角形OA3A4,…,依此規(guī)律,得到等腰直角三角形OA2017A2018,則點A2017的坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點P是菱形ABCD的對角線AC上的一個動點,已知AB=1,∠ADC=120°, 點M,N分別是AB,BC邊上的中點,則△MPN的周長最小值是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com