【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離為5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是( 。

A.5B.25C.10+5D.35

【答案】B

【解析】

要求螞蟻爬行的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.

解:將長方體展開,連接A、B

根據(jù)兩點之間線段最短,

(1)如圖,BD10+515,AD20,

由勾股定理得:AB

2)如圖,BC5,AC20+1030,

由勾股定理得,AB

3)只要把長方體的右側(cè)表面剪開與上面這個側(cè)面所在的平面形成一個長方形,如圖:

∵長方體的寬為10,高為20,點B離點C的距離是5

BDCD+BC20+525AD10,

在直角三角形ABD中,根據(jù)勾股定理得:

AB;

由于

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點D是等腰直角三角形ABC斜邊BC所在直線上一點(不與點B重合),連接AD.

(1)如圖1,當(dāng)點D在線段BC上時,將線段AD繞點A逆時針方向旋轉(zhuǎn)90°得到線段AE,連接CE.求證:BD=CE,BDCE;

(2)如圖2,當(dāng)點D在線段BC延長線上時,將線段AD繞點A逆時針方向旋轉(zhuǎn)90°得到線段AE,連接CE.請畫出圖形。上述結(jié)論是否仍然成立,并說明理由;

(3)根據(jù)圖2,請直接寫出AD、BD、CD三條線段之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論:

①b2>4ac;②ac>0; ③當(dāng)x>1時,yx的增大而減; ④3a+c>0;⑤任意實數(shù)m,a+b≥am2+bm.

其中結(jié)論正確的序號是(  )

A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于AB兩點,交x軸與DC兩點,連接AC,BC,已知A(0,3),C(3,0).

(1)求拋物線的關(guān)系式和tanBAC的值;

(2)P為拋物線上一動點,連接PA,過點PPQOAy軸于點Q,問:是否存在點P使得以A,PQ為頂點的三角形與ACB相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由;

(3)在AB上找一點M,使得OM+DM的值最小,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過點O(0,0),A(4,4),與x軸的另一交點為點B,且拋物線對稱軸與線段OA交于點P.

(1)求該拋物線的解析式和頂點坐標;

(2)過點Px軸的平行線l,若點Q是直線上的動點,連接QB.

①若點O關(guān)于直線QB的對稱點為點C,當(dāng)點C恰好在直線l上時,求點Q的坐標;

②若點O關(guān)于直線QB的對稱點為點D,當(dāng)線段AD的長最短時,求點Q的坐標(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC三個頂點的坐標分別為A(﹣2,4),B(﹣4,1),C(0,1).

(1)畫出與△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點C1的坐標;

(2)畫出以C1為旋轉(zhuǎn)中心,將△A1B1C1逆時針旋轉(zhuǎn)90°后的△A2B2C2

(3)尺規(guī)作圖:連接A1A2,在C1A2邊上求作一點P,使得點PA1A2的距離等于PC1的長(保留作圖痕跡,不寫作法);

(4)請直接寫出∠C1A1P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分線交 BC 于點 D,交AC 于點 E.

(1)判斷 BE △DCE 的外接圓⊙O 的位置關(guān)系,并說明理由;

(2) BE=,BD=1,求△DCE 的外接圓⊙O 的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當(dāng)漁船航行至B處時,測得該島位于正北方向海里的C處,為了防止某國還巡警干擾,就請求我A處的魚監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了促進足球進校園活動的開展,某市舉行了中學(xué)生足球比賽活動現(xiàn)從A,B,C三支獲勝足球隊中,隨機抽取兩支球隊分別到兩所邊遠地區(qū)學(xué)校進行交流.

(1)請用列表或畫樹狀圖的方法(只選擇其中一種),表示出抽到的兩支球隊的所有可能結(jié)果;

(2)求出抽到B隊和C隊參加交流活動的概率.

查看答案和解析>>

同步練習(xí)冊答案