【題目】如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點,交x軸與D,C兩點,連接AC,BC,已知A(0,3),C(3,0).
(1)求拋物線的關(guān)系式和tan∠BAC的值;
(2)P為拋物線上一動點,連接PA,過點P作PQ⊥OA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ACB相似?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由;
(3)在AB上找一點M,使得OM+DM的值最小,直接寫出點M的坐標(biāo).
【答案】(1)拋物線解析式:y=x2﹣x+3;tan∠BAC=;(2)點P坐標(biāo)為:(11,36),(,),(﹣1,6),(,);(3)M點坐標(biāo)(,).
【解析】
(1)C兩點坐標(biāo)代入二次函數(shù)的解析式,解方程組求出m、n的值即可得拋物線的解析式,利用解析式可求出D點坐標(biāo),根據(jù)拋物線和直線交于A、B兩點,解方程組可求得B點坐標(biāo),根據(jù)A、B、C三點坐標(biāo)可知△ABC是直角三角形,進(jìn)而可求得tanBAC 的值.(2)設(shè)P(a,a2﹣a+3),根據(jù)QA=∠ACB=90°可知相似比為3或,分別討論點P在點A的下方和下方兩種情況,根據(jù)相似比求出a的值即可的P點坐標(biāo);(3)由A、B兩點坐標(biāo)求出直線AB的解析式,作點O關(guān)于直線AB的對稱點O',可求出O′的坐標(biāo)當(dāng)O',M,D三點共線時,OM+DM值最小,連接O'D交AB于M,根據(jù)D、O′坐標(biāo)可求出O'D的析式,結(jié)合AB的解析式求出M的坐標(biāo)即可.
(1)∵拋物線y=x2+mx+n過點A(0,3),點C(3,0).
∴ ,
解得:n=3,m=﹣,
∴拋物線解析式:y=x2﹣x+3
當(dāng)y=0時,0=x2﹣x+3
∴x1=3,x2=2
∴D點坐標(biāo)(2,0)
∵拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點
∴,
解得: , ;
∴B點坐標(biāo)(4,1)
∵A(0,3),C(3,0),B(4,1)
∴AB=2,BC=,AC=3,
∵AB2=20,BC2=2,AC2=18
∴AB2=BC2+AC2.
∴∠ACB=90°
∴tan∠BAC==,
(2)設(shè)P(a,a2﹣a+3),
若點P在點A的下方,則PQ=a>0
∵以A,P,Q為頂點的三角形與△ACB相似,且∠PQA=∠ACB=90°
∴或,
若,則3AQ=PQ 即3[3﹣(a2﹣a+3)]=a
解得a=,a=0(不合題意舍去)
∴點P(,)
若,則AQ=3PQ 即[3﹣(a2﹣a+3)]=3a
解得:a=0(不合題意舍去),a=﹣1(不合題意舍去)
若點P在點A上方,且在y軸左側(cè),則PQ=﹣a>0
∵以A,P,Q為頂點的三角形與△ACB相似,且∠PQA=∠ACB=90°
∴或
若,則3AQ=PQ,即3[(a2﹣a+3)﹣3]=﹣a
解得:a=0(不合題意舍去),a=(不合題意舍去)
若,則AQ=3PQ 即[(a2﹣a+3)﹣3]=﹣3a
解得:a=0(不合題意舍去),a=﹣1
∴點P(﹣1,6)
若點P在點A上方,且在y軸右側(cè),則PQ=a>0
∵以A,P,Q為頂點的三角形與△ACB相似,且∠PQA=∠ACB=90°
∴或
若,則3AQ=PQ,即3[(a2﹣a+3)﹣3]=a
解得:a=0(不合題意舍去),a=,
∴點P(,)
若,則AQ=3PQ 即[(a2﹣a+3)﹣3]=3a
解得:a=0(不合題意舍去),a=11,
∴點P(11,36)
綜上所述:點P坐標(biāo)為:(11,36),(,),(﹣1,6),(,)
(3)∵A(0,3),B(4,1)
∴直線AB的解析式:y=﹣x+3
作點O關(guān)于直線AB的對稱點O'(,)
∴OM+DM=O'M+DM
根據(jù)兩點之間,線段最短,則當(dāng)O',M,D三點共線時,OM+DM值最。
連接O'D交AB于M
∵O'(,),D(2,0)
∴O'D解析式:y=12x﹣24
則
解得:
∴M點坐標(biāo)( ,)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生對語文、數(shù)學(xué)、英語、物理四科的喜愛程度(每人只選一科),特對八年級某班進(jìn)行了調(diào)查,并繪制成如下頻數(shù)和頻率統(tǒng)計表和扇形統(tǒng)計圖:
科目 | 頻數(shù) | 頻率 |
語文 | 0.5 | |
數(shù)學(xué) | 12 | |
英語 | 6 | |
物理 | 0.2 |
(1)求出這次調(diào)查的總?cè)藬?shù);
(2)求出表中的值;
(3)若該校八年級有學(xué)生1000人,請你算出喜愛英語的人數(shù),并發(fā)表你的看法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四個均由十六個小正方形組成的正方形網(wǎng)格中,各有一個三角形ABC,那么這四個三角形中,不是直角三角形的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx(a≠0)過點A(,﹣3)和點B(3,0).過點A作直線AC∥x軸,交y軸于點C.
(1)求拋物線的解析式;
(2)在拋物線上取一點P,過點P作直線AC的垂線,垂足為D.連接OA,使得以A,D,P為頂點的三角形與△AOC相似,求出對應(yīng)點P的坐標(biāo);
(3)拋物線上是否存在點Q,使得S△AOC=S△AOQ?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形EFGH的頂點在邊長為3的正方形ABCD邊上,若AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關(guān)系式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離為5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是( )
A.5B.25C.10+5D.35
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知△ABC三個頂點分別為A(﹣1,2)、B(2,1)、C(4,5).
(1)畫出△ABC關(guān)于x對稱的△A1B1C1;
(2)以原點O為位似中心,在x軸的上方畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2,并求出△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點.
(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)過點B作BC⊥x軸,垂足為點C,連接AC,求△ACB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com