【題目】為方便市民通行,某廣場計劃對坡角為30°,坡長為60米的斜坡AB進行改造,在斜坡中點D處挖去部分坡體(陰影表示),修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.

(1)若修建的斜坡BE的坡角為36°,則平臺DE的長約為多少米?
(2)在距離坡角A點27米遠的G處是商場主樓,小明在D點測得主樓頂部H 的仰角為30°,那么主樓GH高約為多少米?(結(jié)果取整數(shù),參考數(shù)據(jù):sin36°=0.6,cos36°=0.8,tan36°=0.7, =1.7)

【答案】
(1)解:∵修建的斜坡BE的坡角(即∠BEF)為36°,

∴∠BEF=36°,

∵∠DAC=∠BDF=30°,AD=BD=30,

∴BF= BD=15,DF=15 ≈25.98,

EF= = ≈21.43

故:DE=DF﹣EF=4(米);


(2)解:過點D作DP⊥AC,垂足為P.

在Rt△DPA中,DP= AD= ×30=15,

PA=ADcos30°= ×30=15 ,

在矩形DPGM中,MG=DP=15,DM=PG=15 +27,

在Rt△DMH中,

HM=DMtan30°= ×(15 +27)=15+9 ,

GH=HM+MG=15+15+9 ≈45米.

答:建筑物GH高約為45米.


【解析】(1)因為修建的斜坡BE的坡角(即∠BEF)為36°,由∠DAC=∠BDF,AD=BD,得到BF= BD,DF≈25.98,根據(jù)解直角三角形EF= = ≈21.43;得到DE=DF﹣EF;(2)根據(jù)實際問題得到圖形,在Rt△DPA中,DP= AD,PA=ADcos30°,在矩形DPGM中,MG=DP,在Rt△DMH中,HM=DMtan30°,得到GH=HM+MG.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C的坐標分別為(10,0),(0,4),點DOA的中點,點PBC上運動,當(dāng)ODP是腰長為5的等腰三角形時,點P的坐標為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.

(1)直接寫出點E、F的坐標;
(2)設(shè)頂點為F的拋物線交y軸正半軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點M、N,使得四邊形MNFE的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB4BC6,將ABC沿AC折疊,使點B落在點E處,CEAD于點F,則DF的長等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點O是BD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( )

A.2對
B.3對
C.4對
D.5對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課題組為了解全市七年級學(xué)生對數(shù)學(xué)知識的掌握情況,在一次數(shù)學(xué)檢測中,從全市2000名年級考生中隨機抽取部分學(xué)生的數(shù)學(xué)成績進行調(diào)查,并將調(diào)查結(jié)果繪制成如下圖表:

1)表中所表示的數(shù)分別為: ,

2)請在圖中補全頻數(shù)分布直方圖;

3)如果把成績在100分以上(含100分)定為優(yōu)秀,那么該市2000名七年級考生數(shù)學(xué)成績?yōu)閮?yōu)秀的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要使平行四邊形ABCD是正方形,則應(yīng)添加的一組條件是______(添加一組條件即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等腰三角形的周長為20 cm,底邊長為x cm,一腰長為y cm,則yx之間的函數(shù)表達式正確的是(  )

A. y202x(0x20) B. y202x(0x10)

C. y(20x)(0x20) D. y (20x)(0x10)

查看答案和解析>>

同步練習(xí)冊答案