【題目】如圖所示,正方形紙片ABCD中,對角線AC,BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,展開后折痕DE分別交AB,AC于點E,G,連接GF,給出下列結論:
①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,則正方形ABCD的面積是6+4 ,其中正確的結論個數(shù)有()
A. 2個B. 4個C. 3個D. 5個
【答案】C
【解析】
根據(jù)四邊形ABCD為正方形,以及折疊的性質,可以直接得到∠ADG的角度,以及AE=FE,在△BEF中,EF<BE,可以得到2AE<AB,結合三角函數(shù)的定義對②作出判斷;
在△AGD和△OGD中高相等,底不同,可以直接判斷其大小,而四邊形AEFG是菱形的判定需證得AE=EF=GF=AG;
要計算OG和BE的關系,我們需利用到中間量EF,即四邊形AEFG的邊長,可以轉化出BE和OG的關系;
當已知△OGF的面積時,根據(jù)菱形的性質,可以求得OG的長,進而求出BE的長度,而AE的長度與GF相同,GF可由勾股定理得出,進而求出AB的長度,正方形ABCD的面積也出來了.
∵四邊形ABCD是正方形,
∴∠GAD=∠ADO=45°.
由折疊的性質可得:∠ADG=∠ADO=22.5°,故①正確;
∵由折疊的性質可得:AE=EF,∠EFD=∠EAD=90°,
∴AE=EF<BE,
∴AE<AB,
∴>2.故②錯誤;
∵∠AOB=90°,
∴AG=FG>OG.
∵△AGD與△OGD同高,
∴S△AGD>S△OGD.故③錯誤;
∵∠EFD=∠AOF=90°,
∴EF∥AC,
∴∠FEG=∠AGE.
∵∠AGE=∠FGE,
∴∠FEG=∠FGE,
∴EF=GF.
∵AE=EF,
∴AE=GF.
∵AE=EF=GF,AG=GF,
∴AE=EF=GF=AG,
∴四邊形AEFG是菱形,故④正確;
∵四邊形AEFG是菱形,
∴∠OGF=∠OAB=45°,
∴EF=GF=OG,
∴BE=EF=×OG=2OG.故⑤正確;
∵四邊形AEFG是菱形,
∴AB∥GF,AB=GF.
∵∠BAO=45°,∠GOF=90°,
∴△OGF是等腰直角三角形.
∵S△OGF=1,
∴ OG=1,
解得OG=,
∴BE=2OG=2,
GF=,
∴AE=GF=2,
∴AB=BE+AE=2+2,
∴S四邊形ABCD=AB =(2 +2) =12+8 .故⑥錯誤.
∴其中正確結論的序號是①④⑤,共3個.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在斜坡的頂部有一鐵塔AB,B是CD的中點,CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12 m,塔影長DE=18 m,小明和小華的身高都是1.6m,同一時刻,小明站在點E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為2m和1m,那么塔高AB為( )
A. 24m B. 22m C. 20m D. 18m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:a是最大的負整數(shù),b是最小的正整數(shù),且c=a+b,請回答下列問題:
(1)請直接寫出a,b,c的值:a= ;b= ;c= ;
(2)a,b,c在數(shù)軸上所對應的點分別為A,B,C,請在如圖的數(shù)軸上表示出A,B,C三點;
(3)在(2)的情況下.點A,B,C開始在數(shù)軸上運動,若點A,點C以每秒1個單位的速度向左運動,同時,點B以每秒5個單位長度的速度向右運動,假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,請問:AB﹣BC的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求出AB﹣BC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下列推理,并填寫完理由
已知,如圖,∠BAE+∠AED=180°,∠M=∠N,
試說明:
解:∵∠BAE+∠AED=180(已知)
∴ ∥ ( )
∴∠BAE= ( 兩直線平行,內錯角相等 )
又∵∠M=∠N。ㄒ阎
∴ ∥ ( )
∴∠NAE= ( )
∴∠BAE-∠NAE= - ( )
即∠1=∠2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是單位長度為1的正方形網(wǎng)格,若A,B兩點的坐標分別為,.
請解決下列問題:
(1)在網(wǎng)格圖中畫出平面直角坐標系,并直接寫出點C的坐標_________.
(2)將圖中三角形ABC沿x軸向右平移1個單位,再沿y軸向上平移2個單位后得到三角形,則的坐標為_________;的坐標為_________;的坐標為_________;
(3)在y軸上是否存在點P,使得三角形的面積為4,若存在,請直接寫出P點坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩校參加區(qū)教育局舉辦的學生英語口語競賽,兩校參賽人數(shù)相等.比賽結束后,發(fā)現(xiàn)學生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖表.
(1)在圖1中,“7分”所在扇形的圓心角等于 .
(2)請你將圖2的條形統(tǒng)計圖補充完整;
(3)經計算,乙校的平均分是8.3分,中位數(shù)是8分,請寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個學校成績較好.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,奧運福娃在5×5的方格(每小格邊長為1m)上沿著網(wǎng)格線運動.貝貝從A處出發(fā)去尋找B、C、D處的其它福娃,規(guī)定:向上向右走為正,向下向左走為負.如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(﹣1,﹣4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向,那么圖中
(1)B→D( , ),C→ (﹣3,﹣4);
(2)若貝貝的行走路線為A→B→C→D,請計算貝貝走過的路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,城市規(guī)劃部門計劃在城市廣場的一塊長方形空地上修建乙面積為1500m2的停車場,將停車場四周余下的空地修建成同樣寬的通道,已知長方形空地的長為60m,寬為40m.
(1)求通道的寬度;
(2)某公司承攬了修建停車場的工程(不考慮修通道),為了盡量減少施工對城市交通的影響,實施施工時,每天的工作效率比原計劃增加了20%,結果提前2天完成任務,求該公司原計劃每天修建多少m2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D.
(1)求證:AC平分∠DAB;
(2)求證:AC2=ADAB;
(3)若AD=,sinB=,求線段BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com