【題目】如圖是單位長度為1的正方形網(wǎng)格,若A,B兩點的坐標(biāo)分別為,.
請解決下列問題:
(1)在網(wǎng)格圖中畫出平面直角坐標(biāo)系,并直接寫出點C的坐標(biāo)_________.
(2)將圖中三角形ABC沿x軸向右平移1個單位,再沿y軸向上平移2個單位后得到三角形,則的坐標(biāo)為_________;的坐標(biāo)為_________;的坐標(biāo)為_________;
(3)在y軸上是否存在點P,使得三角形的面積為4,若存在,請直接寫出P點坐標(biāo):若不存在,請說明理由.
【答案】(1)圖略, ;(2),,;(3)存在,.
【解析】
(1)利用A、B點的坐標(biāo)建立平面直角坐標(biāo)系,然后寫出點C的坐標(biāo);
(2)利用點平移的坐標(biāo)變換規(guī)律分別寫出點A1、B1、C1的坐標(biāo),然后描點即可;
(3)設(shè)P(0,t),根據(jù)三角形面積公式得到2×|t﹣6|=4,然后解絕對值方程求出t,從而得到P點坐標(biāo).
(1)如圖,C點坐標(biāo)為(﹣1,4);
(2)如圖,△A1B1C1為所作;A1的坐標(biāo)為(﹣2,4);B1的坐標(biāo)為(4,4);C1的坐標(biāo)為(0,6).
故答案為:(﹣1,4),(﹣2,4),(4,4),(0,6);
(3)存在.
設(shè)P(0,t),根據(jù)題意得:2×|t﹣6|=4,解得:t=2或t=10,所以滿足條件的P點坐標(biāo)為(0,2)或(0,10).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個斜邊長為10cm的紅色三角形紙片,一個斜邊長為6cm的藍(lán)色三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形,則紅、藍(lán)兩張紙片的面積之和是( )
A. 60cm2 B. 50cm2 C. 40cm2 D. 30cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在有些情況下,不需要計算出結(jié)果也能把絕對值符號去掉。例如:|6+7|= 6+7 ;|6—7|=7- 6;|7-6|=7- 6 ;|―6―7|=6+7;根據(jù)上面的規(guī)律,把下列各式寫成去掉絕對值符號的形式:
(1)|7-21|=______;
(2)||=_______;
(3)||=________;
(4)用合理的方法計算:||+||-||.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點,,在同一直線上,射線在的內(nèi)部,,分別是,的平分線,請?zhí)骄?/span>與的數(shù)量關(guān)系.
(1)當(dāng),時,求出和的度數(shù),并寫出他們的數(shù)量關(guān)系;
(2)一般情況下,寫出和之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形紙片ABCD中,對角線AC,BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,展開后折痕DE分別交AB,AC于點E,G,連接GF,給出下列結(jié)論:
①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,則正方形ABCD的面積是6+4 ,其中正確的結(jié)論個數(shù)有()
A. 2個B. 4個C. 3個D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù)a1、a2、a3、a4、……滿足下列條件:a1=-1,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,……,an+1=-|an+n|(n為正整數(shù))依此類推,則a2019的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C三點在同一直線上,AB=16cm,BC=10cm,M、N分別是AB、BC的中點,則MN等于__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com