ABCD中,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn),點(diǎn)E是邊CD的中點(diǎn),且AB=6,BC=10,則OE=       .
5.

試題分析:畫(huà)出圖形,根據(jù)平行線的性質(zhì),結(jié)合點(diǎn)E是邊CD的中點(diǎn),可判斷OE是△DBC的中位線,從而可得出OE的長(zhǎng)度:
∵四邊形ABCD是平行四變形,∴點(diǎn)O是BD中點(diǎn).
∵點(diǎn)E是邊CD的中點(diǎn),∴OE是△DBC的中位線.
∴OE=BC=5.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:矩形ABCD中,AB=8,BC=6,請(qǐng)?jiān)谙聢D中畫(huà)出面積不相等的三個(gè)菱形大致圖形,使菱形的頂點(diǎn)都在矩形的邊上,并直接寫(xiě)出你畫(huà)的菱形的邊長(zhǎng).

圖①邊長(zhǎng)=         ; 圖②邊長(zhǎng)=          ;圖③邊長(zhǎng)=          ;
此題中是否存在滿足條件的面積最大的菱形?     (填“存在”或“不存在”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列判斷中錯(cuò)誤的是(   )
A.平行四邊形的對(duì)邊平行且相等.
B.四條邊都相等且四個(gè)角也都相等的四邊形是正方形.
C.對(duì)角線互相垂直的四邊形是菱形.
D.對(duì)角線相等的平行四邊形是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知梯形的中位線長(zhǎng)是4cm,下底長(zhǎng)是5cm,則它的上底長(zhǎng)是     cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,以Rt△ABC的斜邊BC為一邊作正方形BCDE,設(shè)正方形的中心為O,連結(jié)AO,如果AB=3,AO=,那么AC的長(zhǎng)等于(   )
A.12B.7C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正六邊形的邊心距與邊長(zhǎng)之比為
A.B.C.1:2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我們知道,矩形是特殊的平行四邊形,所以矩形除了具備平行四邊形的一切性質(zhì)還有其特殊的性質(zhì);同樣,黃金矩形是特殊的矩形,因此黃金矩形有與一般矩形不一樣的知識(shí).
已知平行四邊形ABCD,∠A=60°,AB=2a,AD=a.

(1)把所給的平行四邊形ABCD用兩種方式分割并作說(shuō)明(見(jiàn)題答卡表格里的示例);
要求:用直線段分割,分割成的圖形是學(xué)習(xí)過(guò)的特殊圖形且不超出四個(gè).
(2)圖中關(guān)于邊、角和對(duì)角線會(huì)有若干關(guān)系或問(wèn)題.現(xiàn)在請(qǐng)計(jì)算兩條對(duì)角線的長(zhǎng)度.
要求:計(jì)算對(duì)角線BD長(zhǎng)的過(guò)程中要有必要的論證;直接寫(xiě)出對(duì)角線AC的長(zhǎng).
解:在表格中作答
分割圖形
     分割或圖形說(shuō)明
示例

示例①分割成兩個(gè)菱形。
②兩個(gè)菱形的邊長(zhǎng)都為a,銳角都為60°。

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,矩形ABCD的面積為20cm2,對(duì)角線交于點(diǎn)O;以AB、AO為鄰邊做平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1;以AB、AO1為鄰邊做平行四邊形AO1C2B;…;依此類(lèi)推,則平行四邊形AO4C5B的面積為

A.cm2   B.cm2    C.cm2      D.cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,P為正方形ABCD的邊AD上的一個(gè)動(dòng)點(diǎn),AE⊥BP,CF⊥BP,垂足分別為點(diǎn)E、F,已知AD=4.

(1)試說(shuō)明AE2+CF2的值是一個(gè)常數(shù);
(2)過(guò)點(diǎn)P作PM∥FC交CD于點(diǎn)M,點(diǎn)P在何位置時(shí)線段DM最長(zhǎng),并求出此時(shí)DM的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案