正六邊形的邊心距與邊長之比為
A.B.C.1:2D.
B

試題分析:經(jīng)過中心作邊的垂線,并連接中心與一個端點構造直角三角形,把正多邊形的計算轉化為解直角三角形:
設六邊形的邊長是a,則半徑長也是a。
如圖,經(jīng)過正六邊形的中心O作邊AB的垂線OC,則∠AOC=30°。

在Rt△OBC中, OC=a•cos30°=。
∴正六邊形的邊心距邊長與之比為:a=:1=∶2。故選B。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,若□ABCD與□EBCF關于BC所在直線對稱,且∠ABE=90°,則∠F=       °.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知直線,相鄰兩條平行直線間的距離都是2,如果正方形ABCD的四個頂點分別在四條直線上,則正方形邊長的值為        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線l過正方形ABCD的頂點B,點A、C到直線l的距離分別是1和3,則正方形的邊長是         .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

ABCD中,點O是對角線AC、BD的交點,點E是邊CD的中點,且AB=6,BC=10,則OE=       .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點得到第一個正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點得到第二個正方形A2B2C2D2…,以此類推,則第六個正方形A6B6C6D6周長是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將矩形ABCD沿對角線BD折疊,使點C和點C′重合,若AB=2,則C′D的長為【   】
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.

(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在矩形ABCD中,AB=6,BC=4,有一個半徑為1的硬幣與邊AB、AD相切,硬幣從如圖所示的位置開始,在矩形內(nèi)沿著邊AB、BC、CD、DA滾動到開始的位置為止,硬幣自身滾動的圈數(shù)大約是

A.1圈       B.2圈      C.3圈      D.4圈

查看答案和解析>>

同步練習冊答案