如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個(gè)正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個(gè)正方形A2B2C2D2…,以此類推,則第六個(gè)正方形A6B6C6D6周長是     

試題分析:順次連接正方形ABCD四邊的中點(diǎn)得正方形A1B1C1D1,則得正方形A1B1C1D1的面積為正方形ABCD面積的一半,即,則周長是原來的,即為;
順次連接正方形A1B1C1D1中點(diǎn)得正方形A2B2C2D2,則正方形A2B2C2D2的面積為正方形A1B1C1D1面積的一半,即,則周長是原來的,即為2;
順次連接正方形A2B2C2D2得正方形A3B3C3D3,則正方形A3B3C3D3的面積為正方形A2B2C2D2面積的一半,即,則周長是原來的,即為;
順次連接正方形A3B3C3D3中點(diǎn)得正方形A4B4C4D4,則正方形A4B4C4D4的面積為正方形A3B3C3D3面積的一半,即,則周長是原來的,即為1;
……
以此類推:第六個(gè)正方形A6B6C6D6周長是原來的,即為。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知,,.求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

動(dòng)手操作:在一張長12cm、寬5cm的矩形紙片內(nèi),要折出一個(gè)菱形.小穎同學(xué)按照取兩組對(duì)邊中點(diǎn)的方法折出菱形EFGH(見方案一),小明同學(xué)沿矩形的對(duì)角線AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF(見方案二).

(1)你能說出小穎、小明所折出的菱形的理由嗎?
(2)請(qǐng)你通過計(jì)算,比較小穎和小明同學(xué)的折法中,哪種菱形面積較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知梯形的面積為24cm2,高為4cm,則此梯形的中位線長為            cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

正六邊形的邊心距與邊長之比為
A.B.C.1:2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下列材料:
如圖1,在梯形ABCD中,AD∥BC,點(diǎn)M、N分別在邊AB、BC上,且MN∥AD,記AD=a,BC=b,若,則有結(jié)論:。

請(qǐng)根據(jù)以上結(jié)論,解答下列問題:

如圖2,3,BE、CF是△ABC的兩條角平分線,過EF上一點(diǎn)P分別作△ABC三邊的垂線段PP1、PP2、PP3,交BC于點(diǎn)P1,交AB于點(diǎn)P2,交AC于點(diǎn)P3。
(1)若點(diǎn)P為線段EF的中點(diǎn),求證:PP1=PP2+PP3;
(2)若點(diǎn)P在線段EF上任意位置時(shí),試探究PP1、PP2、PP3的數(shù)量關(guān)系,給出證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是
A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,∠BAD=2∠B,E,F(xiàn)分別為BC,CD的中點(diǎn),連接AE、AC、AF,則圖中與△ABE全等的三角形(△ABE除外)有

A.1個(gè)         B.2個(gè)        C.3個(gè)        D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖正方形ABCD的邊長為4,E、F分別為DC、BC中點(diǎn).

(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案