【題目】如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.

(1)求拋物線的解析式;

(2)拋物線的對(duì)稱(chēng)軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);

(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和AEM相似?若存在,求出此時(shí)m的值,并直接判斷PCM的形狀;若不存在,請(qǐng)說(shuō)明理由

【答案】解:(1)拋物線(a≠0)經(jīng)過(guò)點(diǎn)A(3,0),點(diǎn)C(0,4),

,解得。

拋物線的解析式為

(2)設(shè)直線AC的解析式為y=kx+b,

A(3,0),點(diǎn)C(0,4),

,解得。

直線AC的解析式為

點(diǎn)M的橫坐標(biāo)為m,點(diǎn)M在AC上,

M點(diǎn)的坐標(biāo)為(m,。

研三理-孟奕含(713000529);點(diǎn)P的橫坐標(biāo)為m,點(diǎn)P在拋物線上,

點(diǎn)P的坐標(biāo)為(m,。

PM=PEME=()=

PM=(0<m<3)。

(3)在(2)的條件下,連PC,在CD上方的拋物線部分存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和AEM相似。理由如下:

由題意,可得AE=3﹣m,EM=,CF=m,PF==,

若以P、C、F為頂點(diǎn)的三角形和AEM相似,分兩種情況:

PFC∽△AEM,則PF:AE=FC:EM,即():(3m)=m:(),

m≠0且m≠3,m=。

∵△PFC∽△AEM,∴∠PCF=AME。

∵∠AME=CMF,∴∠PCF=CMF

在直角CMF中,∵∠CMF+MCF=90°,∴∠PCF+MCF=90°,即PCM=90°

∴△PCM為直角三角形。

CFP∽△AEM,則CF:AE=PF:EM,即m:(3m)=():(),

m≠0且m≠3,m=1。

∵△CFP∽△AEM,∴∠CPF=AME。

∵∠AME=CMF,∴∠CPF=CMF。CP=CM。

∴△PCM為等腰三角形。

綜上所述,存在這樣的點(diǎn)P使PFC與AEM相似.此時(shí)m的值為或1,PCM為直角三角形或等腰三角形。

解析(1)將A(3,0),C(0,4)代入,運(yùn)用待定系數(shù)法即可求出拋物線的解析式。

(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點(diǎn)P、點(diǎn)M的坐標(biāo),即可得到PM的長(zhǎng)。

(3)由于PFC和AEM都是直角,F(xiàn)和E對(duì)應(yīng),則若以P、C、F為頂點(diǎn)的三角形和AEM相似時(shí),分兩種情況進(jìn)行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長(zhǎng),根據(jù)相似三角形對(duì)應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出PCM的形狀。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)展拓展課程展示活動(dòng),需要制作A,B兩種型號(hào)的宣傳廣告共20個(gè),已知AB兩種廣告牌的單價(jià)分別為40元,70

1)若根據(jù)活動(dòng)需要,A種廣告牌數(shù)量與B種廣告牌數(shù)量之比為32,需要多少費(fèi)用?

2)若需制作AB兩種型號(hào)的宣傳廣告牌,其中B種型號(hào)不少于5個(gè),制作總費(fèi)用不超過(guò)1000元,則有幾種制作方案?每一種制作方案的費(fèi)用分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題提出)|a1|+|a2|+|a3|++|a2019|最小值是多少?

(閱讀理解)

為了解決這個(gè)問(wèn)題,我們先從最簡(jiǎn)單的情況入手.|a|的幾何意義是a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離.那么|a1|可以看做a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到1的距離;|a1|+|a2|就可以看作a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到12兩個(gè)點(diǎn)的距離之和.下面我們結(jié)合數(shù)軸研究|a1|+|a2|的最小值.

我們先看a表示的點(diǎn)可能的3種情況,如圖所示:

1)如圖a1的左邊,從圖中很明顯可以看出a12的距離之和大于1

2)如圖,a12之間(包括在12上),可以看出a12的距離之和等于1

3)如圖,a2的右邊,從圖中很明顯可以看出a12的距離之和大于1

(問(wèn)題解決)

1|a2|+|a5|的幾何意義是   .請(qǐng)你結(jié)合數(shù)軸探究:|a2|+|a5|的最小值是   

2|a1|+|a2|+|a3|的幾何意義是   .請(qǐng)你結(jié)合數(shù)軸探究:|a1|+|a2|+|a3|的最小值是   ,并在圖的數(shù)軸上描出得到最小值時(shí)a所在的位置,由此可以得出a   

3)求出|a1|+|a2|+|a3|+|a4|+|a5|的最小值.

4)求出|a1|+|a2|+|a3|++|a2019|的最小值.

(拓展應(yīng)用)

請(qǐng)?jiān)趫D的數(shù)軸上表示出a,使它到2,5的距離之和小于4,并直接寫(xiě)出a的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,半圓O的直徑AB4,DEABE,DFACF,連接CD,DB,OD

1)求證:△CDF≌△BDE;

2)當(dāng)AD   時(shí),四邊形AODC是菱形;

3)當(dāng)AD   時(shí),四邊形AEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一只不透明的盒子里有背面完全相同,正面上分別寫(xiě)有數(shù)字12、3、4的四張卡片,小馬從中隨機(jī)地抽取一張,把卡片上的數(shù)字作為被減數(shù);在另一只不透明的盒子里將形狀、大小完全相同,分別標(biāo)有數(shù)字1、2、3的三個(gè)小球混合后,小虎從中隨機(jī)地抽取一個(gè),把小球上的數(shù)字做為減數(shù),然后計(jì)算出這兩個(gè)數(shù)的差.

1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求這兩數(shù)差為0的概率;

2)小馬與小虎做游戲,規(guī)則是:若這兩數(shù)的差為非正數(shù),則小馬贏;否則小虎贏.你認(rèn)為該游戲公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以的一邊為直徑的半圓與其它兩邊,的交點(diǎn)分別為,,且.

1)試判斷的形狀,并說(shuō)明理由.

2)已知半圓的半徑為5,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是過(guò)圓上一點(diǎn)作圓的切線的尺規(guī)作圖過(guò)程.

已知:⊙O和⊙O上一點(diǎn)P

求作:⊙O的切線MN,使MN經(jīng)過(guò)點(diǎn)P

作法:如圖,

1)作射線OP;

2)以點(diǎn)P為圓心,小于OP的長(zhǎng)為半徑作弧交射線OPA,B兩點(diǎn);

3)分別以點(diǎn)A,B為圓心,以大于長(zhǎng)為半徑作弧,兩弧交于M,N兩點(diǎn);

4)作直線MN.MN就是所求作的⊙O的切線.

請(qǐng)回答:該尺規(guī)作圖的依據(jù)是____________________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)和矩形的邊都在直線,以點(diǎn)為圓心,24為半徑作半圓,分別交直線兩點(diǎn).已知: ,,矩形自右向左在直線上平移,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),矩形停止運(yùn)動(dòng).在平移過(guò)程中,設(shè)矩形對(duì)角線與半圓的交點(diǎn)為 (點(diǎn)為半圓上遠(yuǎn)離點(diǎn)的交點(diǎn)).

1)如圖2,若與半圓相切,求的值;

2)如圖3,當(dāng)與半圓有兩個(gè)交點(diǎn)時(shí),求線段的取值范圍;

3)若線段的長(zhǎng)為20,直接寫(xiě)出此時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Q上一定點(diǎn),P是弦AB上一動(dòng)點(diǎn),CAP中點(diǎn),連接CQ,過(guò)點(diǎn)P于點(diǎn)D,連接AD,CD

已知,設(shè)A,P兩點(diǎn)間的距離為,CD兩點(diǎn)間的距離為

(當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),令y的值為1.30

小榮根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探宄.

下面是小榮的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,得到了yx的幾組對(duì)應(yīng)值:

2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)時(shí),AP的長(zhǎng)度約為__________cm

查看答案和解析>>

同步練習(xí)冊(cè)答案