精英家教網 > 初中數學 > 題目詳情
已知二次函數的圖象如圖所示,有下列5個結論:①;②;③;④;⑤,(的實數)其中正確的結論有(  )
A.2個B.3個C.4個D.5個
B.

試題分析:觀察圖象,開口向下,a<0;對稱軸在y軸的右側,a、b異號,則b>0;拋物線與y軸的交點在x軸的上方,c>0,則abc<0,所以①不正確.
當x=時圖象在x軸下方,則<0,即a+c<b,所以②不正確.
對稱軸為直線x=1,則x=2時圖象在x軸上方,則y=4a+2b+c>0,所以③正確.
,則,而<0,則<0,2c<3b,所以④正確.
開口向下,當x=1,y有最大值a+b+c;當x=m(m≠1)時,y=am2+bm+c,則a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正確.
綜上所述,正確的結論有③④⑤三個.
故選B.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看做一次函數:y=-10x+500.
(1)設李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?(6分)
(2)如果李明想要每月獲得2 000元的利潤,那么銷售單價應定為多少元?(3分)
(3)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2 000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量) (3分)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在直角坐標系中,以點A(,0)為圓心,以為半徑圓與x軸相交于點B,C,與y軸相交于點D,E.

(1)若拋物線經過點C,D兩點,求拋物線的解析式,并判斷點B是否在該拋物線上;
(2)在(1)中的拋物線的對稱軸上有一點P,使得△PBD的周長最小,求點P的坐標;
(3)設Q為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點M,使得四邊形BCQM是平行四邊形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP垂直x軸于點P,連接AC交NP于Q,連接MQ.

(1)點     (填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數關系式,并寫出自變量t的取值范圍,當t為何值時,S的值最大;
(3)是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

綜合與探究:如圖,拋物線與x軸交于A,B兩點(點B在點A的右側)與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線l交拋物線于點Q。

(1)求點A,B,C的坐標。
(2)當點P在線段OB上運動時,直線l分別交BD,BC于點M,N。試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由。
(3)當點P在線段EB上運動時,是否存在點 Q,使△BDQ為直角三角形,若存在,請直接寫出點Q的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

將拋物線先向上平移3個單位,再向左平移2個單位后得到的拋物線解析式為( )
A.B.
C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

二次函數y=ax2+bx+c圖象上部分點的坐標滿足下表:
x

﹣3
﹣2
﹣1
0
1

y

﹣3
﹣2
﹣3
﹣6
﹣11

則該函數圖象的頂點坐標為(  )
A.(﹣3,﹣3)    B.   (﹣2,﹣2)    C. (﹣1,﹣3)       D. (0,﹣6)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

若一次函數的圖象與軸的交點坐標為(﹣2,0),則拋物線的對稱軸為(      )
A.直線x=1B.直線x=﹣2 C.直線x=﹣1 D.直線x=﹣4

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

是二次函數,則=________________________  

查看答案和解析>>

同步練習冊答案