(本小題滿分12分)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點(diǎn)M從O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)N作NP垂直x軸于點(diǎn)P,連接AC交NP于Q,連接MQ.

(1)點(diǎn)     (填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時(shí),S的值最大;
(3)是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
(1)M;(2),當(dāng)時(shí),S的值最大;(3)存在,點(diǎn)M的坐標(biāo)為(1,0)或(2,0),理由見(jiàn)試題解析.

試題分析:(1)(BC÷點(diǎn)N的運(yùn)動(dòng)速度)與(OA÷點(diǎn)M的運(yùn)動(dòng)速度)可知點(diǎn)M能到達(dá)終點(diǎn).
(2)經(jīng)過(guò)t秒時(shí)可得NB=y,OM﹣2t.根據(jù)∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S與t的函數(shù)關(guān)系式后根據(jù)t的值求出S的最大值.
(3)本題分兩種情況討論(若∠AQM=90°,PQ是等腰Rt△MQA底邊MA上的高;若∠QMA=90°,QM與QP重合)求出t值.
試題解析:(1)點(diǎn)M.
(2)經(jīng)過(guò)秒時(shí),NB=,OM=,則CN=,AM=,∵A(4,0),C(0,4),∴AO=CO=4,∵∠AOC=90°,∴∠BCA=∠MAQ=45°,∴QN=CN=,∴PQ=,
∴S△AMQ=AM•PQ==.∴,∴,∵,∴當(dāng)時(shí),S的值最大.
(3)存在.
設(shè)經(jīng)過(guò)秒時(shí),NB=,OM=,則CN=,AM=,∴∠BCA=∠MAQ=45°.
①若∠AQM=90°,則PQ是等腰Rt△MQA底邊MA上的高,∴PQ是底邊MA的中線,∴PQ=AP=MA,
,∴,∴點(diǎn)M的坐標(biāo)為(1,0).
②若∠QMA=90°,此時(shí)QM與QP重合,∴QM=QP=MA,∴,解得:,∴點(diǎn)M的坐標(biāo)為(2,0).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將拋物線向下平移2個(gè)單位再向右平移3個(gè)單位,所得拋物線的表達(dá)式是            

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)A (2,4) 和點(diǎn)B (1,0)都在拋物線上.

(1)求m、n;
(2)向右平移上述拋物線,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達(dá)式;
(3)記平移后拋物線的對(duì)稱軸與直線AB′ 的交點(diǎn)為C,試在x軸上找一個(gè)點(diǎn)D,使得以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)的圖像經(jīng)過(guò)點(diǎn)(0,-4),且當(dāng)x=2,有最大值—2。求該二次函數(shù)的關(guān)系式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲車在彎路做剎車試驗(yàn),收集到的數(shù)據(jù)如下表所示:
速度(千米/時(shí))
0
5
10
15
20
25

剎車距離(米)
0

2

6


(1)請(qǐng)用上表中的各對(duì)數(shù)據(jù)作為點(diǎn)的坐標(biāo),在如圖所示的坐標(biāo)系中畫出剎車距離(米)與速度(千米/時(shí))的函數(shù)圖象,并求函數(shù)的解析式;

(2)在一個(gè)限速為40千米/時(shí)的彎路上,甲、乙兩車相向而行,同時(shí)剎車,但還是相撞了.事后測(cè)得甲、乙兩車剎車距離分別為12米和10.5米,又知乙車剎車距離(米)與速度(千米/時(shí))滿足函數(shù),請(qǐng)你就兩車速度方面分析相撞原因.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線與直線交于點(diǎn).點(diǎn)是拋物線上,之間的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)分別作軸、軸的平行線與直線交于點(diǎn)

(1)求拋物線的函數(shù)解析式;
(2)若點(diǎn)的橫坐標(biāo)為2,求的長(zhǎng);
(3)以,為邊構(gòu)造矩形,設(shè)點(diǎn)的坐標(biāo)為,求出之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C1的頂點(diǎn)為P(1,0),且過(guò)點(diǎn)(0,).將拋物線C1向下平移h個(gè)單位(h>0)得到拋物線C2.一條平行于x軸的直線與兩條拋物線交于A、B、C、D四點(diǎn)(如圖),且點(diǎn)A、C關(guān)于y軸對(duì)稱,直線AB與x軸的距離是m2(m>0).

(1)求拋物線C1的解析式的一般形式;
(2)當(dāng)m=2時(shí),求h的值;
(3)若拋物線C1的對(duì)稱軸與直線AB交于點(diǎn)E,與拋物線C2交于點(diǎn)F.求證:tan∠EDF﹣tan∠ECP=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,矩形紙片ABCD中,BC=4,AB=3,點(diǎn)P是BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合).現(xiàn)將△PCD沿PD翻折,得到△PC’D;作∠BPC’的角平分線,交AB于點(diǎn)E.設(shè)BP=" x,BE=" y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(      )

A、 B、  C、 D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖所示,有下列5個(gè)結(jié)論:①;②;③;④;⑤,(的實(shí)數(shù))其中正確的結(jié)論有(  )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案