【題目】如圖,圖象(折線ABCDE)描述了一汽車在某一直路上行駛過(guò)程中汽車離出發(fā)地的距離S(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,下列說(shuō)法正確的是( 。
A.汽車共行駛了120千米
B.汽車在行駛途中停留了2小時(shí)
C.汽車在AB段的行駛速度與CD段的行駛速度相同
D.汽車自出發(fā)后3小時(shí)至4.5小時(shí)之間行駛的平均速度為80千米/時(shí)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),連接CD,過(guò)點(diǎn)D作DH⊥x軸于點(diǎn)H,過(guò)點(diǎn)A作AE⊥AC交DH的延長(zhǎng)線于點(diǎn)E.
(1)求線段DE的長(zhǎng)度;
(2)如圖2,試在線段AE上找一點(diǎn)F,在線段DE上找一點(diǎn)P,且點(diǎn)M為直線PF上方拋物線上的一點(diǎn),求當(dāng)△CPF的周長(zhǎng)最小時(shí),△MPF面積的最大值是多少;
(3)在(2)問(wèn)的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過(guò)稱中,直線F′P′與x軸交于點(diǎn)K,則是否存在這樣的點(diǎn)K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在直角三角形ABC中,∠BAC=90°,AB=AC,D為BC的中點(diǎn),E為AC上一點(diǎn),點(diǎn)G在BE上,連接DG并延長(zhǎng)交AE于F,若∠FGE=45°.
(1)求證:BDBC=BGBE;
(2)求證:AG⊥BE;
(3)若E為AC的中點(diǎn),求EF:FD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+8與x軸,y軸分別交于點(diǎn)A,B,直線y=x+1與直線AB交于點(diǎn)C,與y軸交于點(diǎn)D.
(1)求點(diǎn)C的坐標(biāo).
(2)求△BDC的面積.
(3)如圖,P是y軸正半軸上的一點(diǎn),Q是直線AB上的一點(diǎn),連接PQ.
①若PQ∥x軸,且點(diǎn)A關(guān)于直線PQ的對(duì)稱點(diǎn)A′恰好落在直線CD上,求PQ的長(zhǎng).
②若△BDC與△BPQ全等(點(diǎn)Q不與點(diǎn)C重合),請(qǐng)寫出所有滿足要求的點(diǎn)Q坐標(biāo)(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:和三角形一邊和另兩邊的延長(zhǎng)線同時(shí)相切的圓叫做三角形這邊上的旁切圓.
如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點(diǎn),AD⊥IC于點(diǎn)D.
(1)試探究:D、E、F三點(diǎn)是否同在一條直線上?證明你的結(jié)論.
(2)設(shè)AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以 , 為兩根且二次項(xiàng)系數(shù)為6的一個(gè)一元二次方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問(wèn)題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加校籃球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)y= (x<0)的圖象與直線y= x+m相交于點(diǎn)A和點(diǎn)B.過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,過(guò)點(diǎn)B作BF⊥y軸于點(diǎn)F,P為線段AB上的一點(diǎn),連接PE、PF.若△PAE和△PBF的面積相等,且xP=﹣ ,xA﹣xB=﹣3,則k的值是( 。
A. ﹣5 B. C. ﹣2 D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評(píng)估活動(dòng),以“我最喜愛的書籍”為主題,對(duì)學(xué)生最喜愛的一種書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖1和圖2提供的信息,解答下列問(wèn)題:
(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?
(2)請(qǐng)把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;
(3)求出扇形統(tǒng)計(jì)圖(圖2)中,體育部分所對(duì)應(yīng)的圓心角的度數(shù);
(4)如果這所中學(xué)共有學(xué)生1800名,那么請(qǐng)你估計(jì)最喜愛科普類書籍的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com