【題目】如圖,PA,PB分別與⊙O相切于AB兩點(diǎn),∠ACB=60°

(1)求∠P的度數(shù);

(2)若⊙O的半徑長為2cm,求圖中陰影部分的面積.

【答案】(1)P=60°;(2)4-π

【解析】

(1)先證明∠P=180°-AOB,根據(jù)∠AOB=2ACB求出∠AOB即可解決問題.

(2)連接OP,如圖,根據(jù)切線的性質(zhì)和切線長定理得到∠PAO=PBO=90°,∠APO=30°,則根據(jù)四邊形內(nèi)角和得到∠AOB=180°-APB=120°,再在RtPAO中利用含30度的直角三角形三邊的關(guān)系得到AP=OA=2,則SPAO=2,然后根據(jù)扇形面積公式,利用陰影部分的面積=S四邊形AOBP-S扇形AOB進(jìn)行計(jì)算.

解:(1)連接OA、OB,

PA、PB是⊙O切線,

PAOA,PBOB

∴∠PAO=PBO=90°,

∵∠P+PAO+AOB+PBO=360°

∴∠P=180°-AOB,

∵∠ACB=60°,

∴∠AOB=2ACB=120°,

∴∠P=180°-120°=60°,

(2)如圖,連接OP,

PAPB是⊙O的兩條切線,

OAAP,OBPBOP平分∠APB,

∴∠PAO=PBO=90°,∠APO=×60°=30°,

∴∠AOB=180°-APB=180°-60°=120°

RtPAO中,∵OA=2,∠APO=30°,

AP=OA=2,

SPAO=×2×2=2,

∴陰影部分的面積=S四邊形AOBP-S扇形AOB=2×2-=4-π

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子廠商設(shè)計(jì)了一款制造成本為18元新型電子廠品,投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到每月銷售量y(萬件)與銷售單價x(元)之間的部分?jǐn)?shù)據(jù)如下:

銷售單價x(元/件)

20

25

30

35

每月銷售量y(萬件)

60

50

40

30

(1)求出每月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系式.

(2)求出每月的利潤z(萬元)與銷售單x(元)之間的函數(shù)關(guān)系式.

(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售利潤率不能高于50%,而且該電子廠制造出這種產(chǎn)品每月的制造成本不能超過900萬元.那么并求出當(dāng)銷售單價定為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?(利潤=售價﹣制造成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形的一條邊長為x,周長的一半為y,定義(x,y)為這個矩形的坐標(biāo)。如圖2,在平面直角坐標(biāo)系中,直線x=1,y=3將第一象限劃分成4個區(qū)域,已知矩形1的坐標(biāo)的對應(yīng)點(diǎn)A落在如圖所示的雙曲線上,矩形2的坐標(biāo)的對應(yīng)點(diǎn)落在區(qū)域④中,則下面敘述中正確的是( )

A. 點(diǎn)A的橫坐標(biāo)有可能大于3

B. 矩形1是正方形時,點(diǎn)A位于區(qū)域②

C. 當(dāng)點(diǎn)A沿雙曲線向上移動時,矩形1的面積減小

D. 當(dāng)點(diǎn)A位于區(qū)域①時,矩形1可能和矩形2全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】跳繩是大家喜聞樂見的一項(xiàng)體育運(yùn)動,集體跳繩時,需要兩人同頻甩動繩子,當(dāng)繩子甩到最高處時,其形狀可近似看作拋物線,下圖是小明和小亮甩繩子到最高處時的示意圖,兩人拿繩子的手之間的距離為4,離地面的高度為1,以小明的手所在位置為原點(diǎn)建立平面直角坐標(biāo)系.

(1)當(dāng)身高為15的小紅站在繩子的正下方,且距小明拿繩子手的右側(cè)1處時,繩子剛好通過小紅的頭頂,求繩子所對應(yīng)的拋物線的表達(dá)式;

(2)若身高為的小麗也站在繩子的正下方.

①當(dāng)小麗在距小亮拿繩子手的左側(cè)1.5處時,繩子能碰到小麗的頭嗎?請說明理由;

②設(shè)小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,的取值范圍.(參考數(shù)據(jù): 3.16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,頂點(diǎn)分別在坐標(biāo)軸的正半軸上, ,點(diǎn)在直線,直線與折線有公共點(diǎn).

1)點(diǎn)的坐標(biāo)是 ;

2)若直線經(jīng)過點(diǎn),求直線的解析式;

3)對于一次函數(shù),當(dāng)的增大而減小時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家為了實(shí)現(xiàn)2020年全面脫貧目標(biāo),實(shí)施“精準(zhǔn)扶貧”戰(zhàn)略,采取異地搬遷,產(chǎn)業(yè)扶持等措施.使貧困戶的生活條件得到改善,生活質(zhì)量明顯提高.某旗縣為了全面了解貧困縣對扶貧工作的滿意度情況,進(jìn)行隨機(jī)抽樣調(diào)查,分為四個類別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).

根據(jù)以上信息,解答下列問題:

(1)將圖1補(bǔ)充完整;

(2)通過分析,貧困戶對扶貧工作的滿意度(A、B、C類視為滿意)是  

(3)市扶貧辦從該旗縣甲鄉(xiāng)鎮(zhèn)3戶、乙鄉(xiāng)鎮(zhèn)2戶共5戶貧困戶中,隨機(jī)抽取兩戶進(jìn)行滿意度回訪,求這兩戶貧困戶恰好都是同一鄉(xiāng)鎮(zhèn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為3的⊙O經(jīng)過等邊△ABO的頂點(diǎn)A、B,點(diǎn)P為半徑OB上的動點(diǎn),連接AP,過點(diǎn)PPCAP交⊙O于點(diǎn)C,當(dāng)∠ACP=30°時,AP的長為(  )

A. 3B. 3C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點(diǎn),直線x軸交于點(diǎn)

1)求的值;

2)過第二象限的點(diǎn)作平行于x軸的直線,交直線于點(diǎn)C,交函數(shù)的圖象于點(diǎn)D

①當(dāng)時,判斷線段PDPC的數(shù)量關(guān)系,并說明理由;

②若,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣6,0),C(0,2).將矩形OABC繞點(diǎn)O順時針方向旋轉(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊答案